11 research outputs found

    Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis : Fundamentals Of Care for UveitiS (FOCUS) Initiative

    Get PDF
    Supplemental material available at www.aaojournal.org. Supported by AbbVie, Inc., and the Fundamentals of Care for Uveitis Initiative National Faculty. This manuscript was developed subsequent to an AbbVie-sponsored literature review of noninfectious, nonanterior uveitis. The meeting was conducted to understand the available literature regarding the management of patients with noninfectious, nonanterior uveitis. The program involved a total of 139 experts from 28 countries, who were selected for participation by AbbVie. However, AbbVie was not involved in the development of the manuscript. The authors maintained complete control over the content and this manuscript reflects the opinions of the authors. AbbVie selected the discussion participants and reviewed the final manuscript draft for scientific accuracy, but the authors determined the final content. All authors made substantial contributions to the article or critically revised it for important intellectual content and approved the final manuscript. AbbVie provided funding to invited participants, including honoraria for their attendance at the meetings. Travel to and from the meetings was reimbursed. No payments were made to the authors for the development of this manuscript. Dhinakaran Sambandan, PhD, and Shula Sarner, PhD, of Lucid Partners, Burleighfield House, Buckinghamshire, United Kingdom, provided medical writing and editorial support to the authors in the development of this manuscript; financial support for these services was provided by AbbVie. AbbVie reviewed the manuscript, but was not involved in the methodology, data collection and analysis, or completion of this manuscript.Peer reviewedPublisher PD

    Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (focus) initiative

    Get PDF
    Topic: An international, expert-led consensus initiative to develop systematic, evidence-based recommendations for the treatment of noninfectious uveitis in the era of biologics. Clinical Relevance: The availability of biologic agents for the treatment of human eye disease has altered practice patterns for the management of noninfectious uveitis. Current guidelines are insufficient to assure optimal use of noncorticosteroid systemic immunomodulatory agents. Methods: An international expert steering committee comprising 9 uveitis specialists (including both ophthalmologists and rheumatologists) identified clinical questions and, together with 6 bibliographic fellows trained in uveitis, conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol systematic reviewof the literature (English language studies from January 1996 through June 2016; Medline [OVID], the Central Cochrane library, EMBASE,CINAHL,SCOPUS,BIOSIS, andWeb of Science). Publications included randomized controlled trials, prospective and retrospective studies with sufficient follow-up, case series with 15 cases or more, peer-reviewed articles, and hand-searched conference abstracts from key conferences. The proposed statements were circulated among 130 international uveitis experts for review.Atotal of 44 globally representativegroupmembersmet in late 2016 to refine these guidelines using a modified Delphi technique and assigned Oxford levels of evidence. Results: In total, 10 questions were addressed resulting in 21 evidence-based guidance statements covering the following topics: when to start noncorticosteroid immunomodulatory therapy, including both biologic and nonbiologic agents; what data to collect before treatment; when to modify or withdraw treatment; how to select agents based on individual efficacy and safety profiles; and evidence in specific uveitic conditions. Shared decision-making, communication among providers and safety monitoring also were addressed as part of the recommendations. Pharmacoeconomic considerations were not addressed. Conclusions: Consensus guidelines were developed based on published literature, expert opinion, and practical experience to bridge the gap between clinical needs and medical evidence to support the treatment of patients with noninfectious uveitis with noncorticosteroid immunomodulatory agents

    The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS)

    Get PDF
    Objective: To develop and update evidence-based and consensus-based guidelines on laparoscopic and robotic pancreatic surgery. Summary Background Data: Minimally invasive pancreatic surgery (MIPS), including laparoscopic and robotic surgery, is complex and technically demanding. Minimizing the risk for patients requires stringent, evidence-based guidelines. Since the International Miami Guidelines on MIPS in 2019, new developments and key publications have been reported, necessitating an update. Methods: Evidence-based guidelines on 22 topics in 8 domains were proposed: terminology, indications, patients, procedures, surgical techniques and instrumentation, assessment tools, implementation and training, and artificial intelligence. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS, September 2022) used the Scottish Intercollegiate Guidelines Network (SIGN) methodology to assess the evidence and develop guideline recommendations, the Delphi method to establish consensus on the recommendations among the Expert Committee, and the AGREE II-GRS tool for guideline quality assessment and external validation by a Validation Committee. Results: Overall, 27 European experts, 6 international experts, 22 international Validation Committee members, 11 Jury Committee members, 18 Research Committee members, and 121 registered attendees of the 2-day meeting were involved in the development and validation of the guidelines. In total, 98 recommendations were developed, including 33 on laparoscopic, 34 on robotic, and 31 on general MIPS, covering 22 topics in 8 domains. Out of 98 recommendations, 97 reached at least 80% consensus among the experts and congress attendees, and all recommendations were externally validated by the Validation Committee. Conclusions: The EGUMIPS evidence-based guidelines on laparoscopic and robotic MIPS can be applied in current clinical practice to provide guidance to patients, surgeons, policy-makers, and medical societies.</p

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L

    The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS)

    No full text
    Objective: To develop and update evidence- and consensus-based guidelines on laparoscopic and robotic pancreatic surgery.Summary Background Data: Minimally invasive pancreatic surgery (MIPS), including laparoscopic and robotic surgery, is complex and technically demanding. Minimizing the risk for patients requires stringent, evidence-based guidelines. Since the International Miami Guidelines on MIPS in 2019, new developments and key publications have been reported, necessitating an update.Methods: Evidence-based guidelines on 22 topics in 8 domains were proposed: terminology, indications, patients, procedures, surgical techniques and instrumentation, assessment tools, implementation and training, and artificial intelligence. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS, September 2022) used the Scottish Intercollegiate Guidelines Network (SIGN) methodology to assess the evidence and develop guideline recommendations, the Delphi method to establish consensus on the recommendations among the Expert Committee, the AGREE II-GRS tool for methodological guideline quality assessment, and external validation by a Validation Committee.Results: Overall, 27 European experts, 6 international experts, 22 international Validation Committee members, 11 Jury Committee members, 18 Research Committee members, and 121 registered attendees of the two-day meeting were involved in the development and validation of the guidelines. In total, 98 recommendations were developed, including 33 on laparoscopic, 34 on robotic and 31 on general MIPS covering 22 topics in 8 domains. Out of 98 recommendations, 97 reached at least 80% consensus among the experts and congress attendees, and all recommendations were externally validated by the Validation Committee. Conclusions: The EGUMIPS evidence-based guidelines on laparoscopic and robotic MIPS can be applied in current clinical practice to provide guidance to patients, surgeons, policy- makers and medical societies

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    corecore