1,224 research outputs found

    What makes a die-hard entrepreneur? Beyond the 'employee or entrepreneur' dichotomy

    Full text link
    The paper makes three contributions to the economics literature on entrepreneurship. We offer a new measure of entrepreneurship which accounts for variations in persistence in self-employment and as a result avoids the weakness of approaches which categorise an individual as an entrepreneur by observing their occupation at just one point in their career. We outline an econometric methodology to account for this approach and find that it is superior to probit/logit models which have dominated the literature. While our results indicate that this existing literature is good at explaining an individual’s propensity to try self-employment, we find that entrepreneurial persistence is determined by a different model and unearth some new insights into the roles of early career experience, finance, role models, gender and the unemployment push effect

    The Influence of Religious Affiliation on the Political Views of LGBT Americans

    Get PDF
    With a nationally representative, repeated cross-sectional sample of over 250,000 Americans from 2016-2019, we investigate the role that religious and LGBT identities play in influencing Americans’ political attitudes, centering the narratives of religious LGBT Americans. We find that nearly half of LGBT Americans affiliate religiously. Logistic regressions show that identifying as religious is related to more conservative views on LGBT rights and abortion while identifying as LGBT is related to more liberal views on both of these issues. We failed to observe interaction effects, suggesting that religious affiliation influences LGBT individuals’ political views in a manner similar to the way it influences cisgender, heterosexual individuals’ views. Comparisons of the variation accounted for by religious or LGBT identities show that religious affiliation more frequently accounted for more variation in political views

    Recent Decisions

    Get PDF
    Comments on recent decisions by Joseph C. Spalding, R. Emmett Fitzgerald, Howard G. Burke, Andrew V. Giorgi, Richard F. Welter, Edward L. Burke, Frank A. Howard, Robert C. Enburg, Carl F. Eiberger, William L. Kirchner, Jr., and William J. Hurley

    Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study

    Get PDF
    © 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse

    A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    Get PDF
    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression

    Hypersensitivity to Ticks and Lyme Disease Risk

    Get PDF
    Persons who report frequent tick-associated itch are less likely to contract Lyme disease than those who do not

    Cauchy-perturbative matching and outer boundary conditions: computational studies

    Get PDF
    We present results from a new technique which allows extraction of gravitational radiation information from a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of one-dimensional linear equations obtained through perturbation techniques over a curved background. We discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show how a numerical module developed for this purpose is able to provide an accurate and numerically convergent description of the gravitational wave propagation and a stable numerical evolution.Comment: 20 pages, RevTe

    Segmented Aperture Interferometric Nulling Testbed (SAINT) II: Component Systems Update

    Get PDF
    "This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interfer-ometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror withthe Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatoriesneeded to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars inthe quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNCwavefront control optics and mechanisms towards repeating narrowband results are described. A narrative isprovided for the design of new optical components aimed at enabling broadband performance. Initial work withthe hardware and software interface for controlling the segmented telescope mirror is also presented.

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    Fundamental Properties of Kepler Planet-Candidate Host Stars using Asteroseismology

    Get PDF
    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size, or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters, or due to planet candidates which may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.Comment: 19 pages, 10 figures, 4 tables; accepted for publication in ApJ; machine-readable versions of tables 1-3 are available as ancillary files or in the source code; v2: minor changes to match published versio
    • …
    corecore