1,827 research outputs found

    Genome sequence of canine herpesvirus

    Get PDF
    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease

    Spontaneous Spinal Epidural Abscess Presenting in a Previously Healthy Young Adult Man

    Get PDF
    We report a case of spontaneous spinal epidural abscess (SEA) with initial chief complaint of shoulder pain and no appreciable neurologic symptoms. Since outcomes of SEA appear to be related to the degree of neurologic deficit at the time of intervention, we explore opportunities for earlier diagnosis

    Approximate Near Neighbors for General Symmetric Norms

    Full text link
    We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every nn, d=no(1)d = n^{o(1)}, and every dd-dimensional symmetric norm \|\cdot\|, there exists a data structure for poly(loglogn)\mathrm{poly}(\log \log n)-approximate nearest neighbor search over \|\cdot\| for nn-point datasets achieving no(1)n^{o(1)} query time and n1+o(1)n^{1+o(1)} space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-kk norms. We also show that our techniques cannot be extended to general norms.Comment: 27 pages, 1 figur

    Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction

    Get PDF
    View-reconstruction and display is an important part of many applications in digital holography such as computer vision and microscopy. Thus far, this has been an offline procedure for megapixel sized holograms. This paper introduces an implementation of real-time view-reconstruction using programmable graphics hardware. The theory of Fresnel-based view-reconstruction is introduced, after which an implementation using stream programming is presented. Two different fast Fourier transform (FFT)-based reconstruction methods are implemented, as well as two different FFT strategies. The efficiency of the methods is evaluated and compared to a CPU-based implementation, providing over 100 times speedup for a hologram size of 2048 x 2048

    Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction

    Get PDF
    View-reconstruction and display is an important part of many applications in digital holography such as computer vision and microscopy. Thus far, this has been an offline procedure for megapixel sized holograms. This paper introduces an implementation of real-time view-reconstruction using programmable graphics hardware. The theory of Fresnel-based view-reconstruction is introduced, after which an implementation using stream programming is presented. Two different fast Fourier transform (FFT)-based reconstruction methods are implemented, as well as two different FFT strategies. The efficiency of the methods is evaluated and compared to a CPU-based implementation, providing over 100 times speedup for a hologram size of 2048 x 2048

    Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene

    Get PDF
    With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms

    Differential Age-Related Declines in Cardiorespiratory Fitness Between People With and Without Type 2 Diabetes Mellitus

    Get PDF
    Objective To assess the extent to which the established age-related decline in cardiorespiratory fitness (CRF) is augmented in adult men with type 2 diabetes mellitus (T2DM). Participants and Methods This study used data from the Aerobics Center Longitudinal Study, conducted between September 18, 1974, and August 3, 2006, in primarily non-Hispanic white, middle-to-upper class adults. The analyses were restricted to adult men with complete data on age, CRF, and T2DM (35,307 participants). Quantile regression models were used to estimate age-related differences in CRF, estimated using a maximal treadmill test, between persons with and without T2DM. Smoking status and birth cohort served as covariates. Results Age-related declines in CRF were observed in men with and without T2DM. For men younger than 60 years, at low-mid percentiles of the CRF distribution the magnitude of the age-related decline in CRF was significantly higher (P-values=.00, .02) in men with T2DM than in those without T2DM. At upper percentiles, the decline with age between the 2 groups was virtually identical. Significant declines in CRF in men 45 years or younger were observed only at high levels of CRF for those without T2DM and at low levels of CRF for those with T2DM (P-values .00, .04). Conclusion This study reported that men younger than 60 years with T2DM at the low-mid CRF percentiles experience an accelerated age-related decline in CRF. Men younger than 60 years with T2DM exhibiting high levels of CRF experienced a decline in CRF comparable to men without T2DM. This study highlights the importance of incorporating sufficient levels of exercise or activity to maintain high CRF in men with T2DM

    Role of cardiac troponin I phosphorylation in cardiac function: From molecule to mouse

    Get PDF
    Abstract only availableThe regulation of cardiac muscle contraction involves the interplay between a variety of molecules on the thick and thin filaments. One important regulatory molecule is troponin, which consists of three subunits, troponin C (TnC) that binds calcium, troponin T (TnT) that binds tropomyosin, and troponin I (TnI) that binds actin and tends to inhibit contraction. Following muscle excitation, cytoplasmic calcium rises and binds TnC, which causes a conformational change in TnI that reduces its affinity for actin; this, in turn, allows TnT and tropomyosin to shift positions revealing myosin binding sites on actin, leading to muscle contraction. Interestingly, cardiac troponin I (cTnI) has several phosphorylation sites, which are known to modulate this regulatory process. For example, phosphorylation of serines 23 and 24 on cTnI by protein kinase A (PKA) is known to decrease the calcium binding affinity of cardiac TnC and, thus, thought to speed muscle relaxation. On the other hand, phosphorylation of cTnI on serines 43 and 45 and threonine 144 by protein kinase C (PKC) decreases both force production and calcium sensitivity of force and is thought to contribute to depressed ventricular function in failing hearts. In this study we investigated the effects of chronic cTnI phosphorylation on cardiac function from transgenic animals in which either PKA phosphorylation sites (Ser-23/Ser-24) (PP) or both the PKA and PKC phosphorylation sites (Ser-23/Ser-24/Ser-43/Ser-45/T-144) (All-P) were replaced with aspartic acid to mimic phosphorylation. Left ventricular cardiac myocytes from PP transgenic mice exhibited less calcium sensitivity of force while myocytes from All-P transgenic mice exhibited decreased maximal force, decreased calcium sensitivity of force, and decreased power output, implicating a dominate role of PKC phosphorylation sites on myofilament function. Consistent with these single myocyte studies, left ventricular power output also was depressed in All-P mice compared to both WT and PP transgenic ventricles. We next tested the hypothesis that PP transgenic mice would engage in greater voluntary running compared to WT and All-P transgenic animals. In contrast to this idea, WT and All-P mice ran ~3- and ~4-fold more than the PP transgenic mouse, respectively. Overall, these results indicate that PKC phosphorylation of cTnI plays a dominant role in depressing contractility and may contribute to the maladaptive behavior.NIH grant to K.S. McDonal

    Linking the formation and fate of exo-Kuiper belts within solar system analogues

    Get PDF
    Abstract Escalating observations of exo-minor planets and their destroyed remnants both passing through the solar system and within white dwarf planetary systems motivate an understanding of the orbital history and fate of exo-Kuiper belts and planetesimal discs. Here we explore how the structure of a 40 − 1000 au annulus of planetesimals orbiting inside of a solar system analogue that is itself initially embedded within a stellar cluster environment varies as the star evolves through all of its stellar phases. We attempt this computationally challenging link in four parts: (1) by performing stellar cluster simulations lasting 100 Myr, (2) by making assumptions about the subsequent quiescent 11 Gyr main-sequence evolution, (3) by performing simulations throughout the giant branch phases of evolution, and (4) by making assumptions about the belt’s evolution during the white dwarf phase. Throughout these stages, we estimate the planetesimals’ gravitational responses to analogues of the four solar system giant planets, as well as to collisional grinding, Galactic tides, stellar flybys, and stellar radiation. We find that the imprint of stellar cluster dynamics on the architecture of ≳ 100 km-sized exo-Kuiper belt planetesimals is retained throughout all phases of stellar evolution unless violent gravitational instabilities are triggered either (1) amongst the giant planets, or (2) due to a close (≪103 au) stellar flyby. In the absence of these instabilities, these minor planets simply double their semimajor axis while retaining their primordial post-cluster eccentricity and inclination distributions, with implications for the free-floating planetesimal population and metal-polluted white dwarfs
    corecore