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Using Commodity Graphics Hardware for
Real-Time Digital Hologram View-Reconstruction

Lukas Ahrenberg, Andrew J. Page, Bryan M. Hennelly, John B. McDonald and Thomas J. Naughton

Abstract—View-reconstruction and display is an important
part of many applications in digital holography such as com-
puter vision and microscopy. Thus far, this has been an offline
procedure for megapixel sized holograms. This paper intro-
duces an implementation of real-time view-reconstruction using
programmable graphics hardware. The theory of Fresnel-based
view-reconstruction is introduced, after which an implementation
using stream programming is presented. Two different fast
Fourier transform (FFT)-based reconstruction methods are im-
plemented, as well as two different FFT strategies. The efficiency
of the methods is evaluated and compared to a CPU-based
implementation, providing over 100 times speedup for a hologram
size of 2048× 2048.

Index Terms—Digital Holography, View-Reconstruction,
Graphics Hardware (GPU), Fresnel Transform

I. I NTRODUCTION

I N 1948, Gabor proposed a new two step imaging method,
which he coined holography [1]. The first step is com-

prised of recording, on a photographic material, the inter-
ference pattern between an object wavefield and a known
reference wavefield. Gabor recognized that this recorded in-
tensity contained indirect information about the phase of the
object wavefield. He proposed a second step to recover this
phase information and to ’replay’ the object image. This
reconstruction step is comprised of illuminating the hologram
with the same reference wavefield as was used in recording.
In the ensuing years there were many contributions to the
science of holography including a milestone paper [2] by Leith
and Upatnieks in 1962. They outlined an optical ’off-axis’
architecture, based on carrier frequencies in communication
theory, to separate the reconstructed object image from the
unwanted noise-like twin image. A few years later Goodman
and Lawrence recorded a hologram on a vidicon with the
lens removed [3]. To reconstruct the hologram they used a
digital PDP-6 computer, to simulate optical propagation, in
lieu of an optical replay. A similar contribution was made
independently in [4]. This electronic recording and numerical
replay of holograms is now known as ’digital holography.’ Two
significant probelms existed with these first steps in digital
holography; 1) The electronic recording devices were of low
resolution and poor quality and 2) the computers used for
numerically reconstructing the holograms were slow and had
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limited memory. Thus, these early contributions received little
attention until a rebirth almost 30 years later when Schnars
and Juptner [5] applied modern CCD cameras and CPUs to
the principle of digital holography. Since then there have
been hundreds of further contributions to the subject. With
continuing advances in the field, holographic recording is set
to be an attractive alternative to current industrial microscopy
and vision systems [6]. One crucial feature of any such
system is the ability to render views from optically captured
digital holograms in real-time. In contrast to optical display
of digital holograms [7], efficient hologram computations are
essential for practical implementations of reconstruction-based
3D object segmentation and recognition algorithms [8], [9],
[10], [11], [12]. While numerically efficient image reconstruc-
tion algorithms exist today, the shear amount of computation
required makes it infeasible on a standard CPU.

The speed and resolution of capturing technology has
advanced constantly, but reconstruction technology has not
kept pace. As the quality of a digital hologram is directly
related to its resolution, a single frame can be in the order of
several gigabytes, and can be expected to grow to terabytes
with future advancements in imaging technology. Currently
the only way to provide real-time view-reconstruction is to
decrease the resolution of the images. Reconstructing images
from optically captured holograms is thus a computationally
expensive problem. Standard CPU computation rates have
stagnated, with the focus switched to adding multiple low
powered cores to a single chip, and thus cannot perform the
required computations fast enough to allow for real-time view-
reconstruction.

Numerical reconstruction of digital holograms is centred on
digitally computing the Fresnel Transform of the electronically
recorded 2DN × N hologram. The Fresnel transform [13]
can be derived from the Helmholtz equation, which exactly
describes free space light propagation, by assuming a number
of approximations. In particular the paraxial approximation
is applied which assumes that all the rays of light in the
system make small angles with the optical axis of the system.
While the discrete counterpart of the integral Fresnel transform
is well defined [14], there have been numerous numerical
algorithms proposed in the literature [15] for its computation.
Each of these algorithms has advantages and disadvantages
in terms of 1) accurate approximating the continuous integral
transform and 2) the time taken to implement the computation.
For a discussion on many of the available algorithms and
a framework for their comparison please consult [15]. In
the literature two algorithms in particular have received the
most attention, the convolution method and the direct method;
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likely because between them they are sufficient to satisfy
the vast majority of digital holographic reconstructions.This
paper is concerned with implementing these two algorithms on
commodity graphics hardware to enable a considerable speed
up over CPU implementations.

There has been very little research into reconstruction of
optically captured digital holograms beyond the capabilities of
modern CPUs. Page et al. [16] used the spare resources of a
loosely–coupled distributed system to reconstruct holograms.
However due to the cost of communication this method is
only efficient for large holograms that can not be processed
on a single memory system. Real-time reconstruction of
optically captured holograms for display purposes require
fast communication and thus a tightly coupled system. Very
recently Shimobaba et al. [17] presented a software similarto
ours that also utilizes graphics hardware for holographic view
reconstruction. Their work is however targeted specifically
towards digital holographic microscopy and only implements
one of the two methods described in this paper. In addition
we perform intensity computation and brightness adjustment
on the GPU which saves a data transfer operation.

Some work has been presented on utilizing specialized and
parallel hardware in computer generated holography (CGH).
Ito et al. [18] have built several generations of a special
purpose hardware platform for point-based CGH. Masuda
et al. [19] and Ahrenberg et al. [20] have presented strate-
gies for accelerated CGH generation on graphics hardware.
Reicherter et al. [21] and Haist et al. [22] have shown that
graphics processing units (GPUs) can be used to efficiently
construct optical tweezers. All of these approaches are point
based and designed specifically for efficiency in CGH, where
the problem consists of a limited number of points located is
3D space. Each point in turn is treated as a light source, and the
contribution over the full hologram from these are computed
and accumulated individually. ThisO(N×M) approach is not
optimal for optical hologram reconstruction, which typically
operates on a huge number of samples arranged in a 2D
grid. Treating each hologram fragment as a source point thus
leads to massive computations. However, as the hologram is
contained is a function on a 2D plane, the Fresnel transform
may be used for light transport. This function can in turn
be computed using anO(N log N) algorithm as discussed in
Section II.

In this paper we present a method to reconstruct optically
captured holograms in real-time using a standard commodity
graphics card, which is commonly found in desktop PCs. The
highly parallel nature of the GPU architecture makes them
attractive for general data processing. While the main area of
application still lies in computer graphics, the architectures
are now general enough to offer significant performance im-
provements in many fields, such as numerical computation and
simulation. Viewed from a general programming perspectivea
GPU can be seen as a powerful stream processor [23]. General
purpose computation on GPUs (GPGPU) has been facilitated
by tools which allow a programmer to access the hardware
outside of a graphics API [24], [25]. As part of the contribu-
tions in this paper we present a stream processor formulation
of the Fresnel transform, and show how to implement it using

Fig. 1. Hologram and Reconstruction planes at a distanced. The distance
r is measured between each data point pair ofU andW .

NVidia’s CUDA GPGPU library [25].
In Sect. II we define the theory underlying the holographic

reconstruction problem and the algorithms used. The imple-
mentation is described in Sect. III-A. Experimental results are
presented in Sect. IV and we conclude in Sect. V.

II. M ETHODS FOR HOLOGRAM RECONSTRUCTION

Given a hologram distribution,U , we can reconstruct the
object image in a plane parallel to the hologram plane and at
distance,d, by modeling the light propagation. The operation
is depicted in Fig. 1. Light propagation between parallel planes
can be mathematically describe by the Fresnel-Kirchhoff in-
tegral

W (u, v) =
i

λ
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2 and λ is
the wavelength of the light source.

If the reconstruction distance,d, is large compared to the
hologram size, the Fresnel or paraxial, wherer is substituted
by the linear and quadratic terms of its Taylor expansion, is
valid [13], [26]. This leads to the expression
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W (u, v) is called the Fresnel Transform ofU(x, y)

In digital holography the hologram,U(x, y), will be rep-
resented as a real or complex valued array of sizeN × M

elements. Discrete numerical reconstruction methods could be
based on Eqns. 1 or 2. However, these would yieldO(n2)
complexity for a full image reconstruction ofn samples.
Instead, it has been shown, [13], that Eqn. 2 can be rewritten
in terms of the continuous Fourier transform. By employing a
discrete Fourier transform operator (which can be implemented
using the FFT; with complexityO(n log n)), denoted asF
below, as well as discrete chirp functions, one may easily
derive the two algorithms [26], [27], [15].

The convolution approach is described by the following
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equation
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where m ∈ [−M
2

, M
2

) and n ∈ [−N
2

, N
2

) are discrete
coordinates andF denotes the discrete Fourier transform.
The convolution method is based on the observation that
the original problem can be formulated as a convolution
between the hologram function and a phase function. Thus the
convolution theorem may be applied to express the operation
as a multiplication in frequency space.

The direct method is derived from Eqn. 2 by rewriting it as
a Fourier transform of the hologram times a phase factor. It
is expressed by
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While the direct method requires only one Fourier trans-
form, and thus is less computationally expensive than the
convolution approach, it effectively changes the size of the
reconstructed image. In other words, the output pixel size is
linearly proportional to the distance parameter,d. A larger d

results in a larger pixel size in the reconstruction, and therefore
a larger spatial area of the the reconstruction. This property is
sometimes undesirable. The convolution method on the other
hand will keep the size of each sample constant and thus is
more suited for hologram analysis approaches where object
sizes must be comparable. As each method has its advantages
we have chosen to implement both in this paper.

A hologram encodes both phase and amplitude and will
thus represent the full light-field at the sensor. This allows us
to reconstruct different views of the captured scene. By only
considering a sub-area of the total hologram, we are effectively
creating a camera with a smaller aperture and consequently
decreased resolution of the reconstruction. However, not only
will this procedure lead to an increased depth of field, it will
effectlively reconstruct an image based on light coming from
only certain directions of the scene. Thus, the location of the
aperture relative to the optical axis will dictate the view imaged
through it. Therefore, by choosing size and location in the
hologram plane different perspectives can be reconstructed.

The aperture procedure can be written as

UA = Tk,l

(

UA
s,t
k,l

)

exp

[

2πi

λd

(

kmδ2

m + lnδ2

m

)

]

, (5)

whereA
s,t
k,l is a binary valued box aperture function of dimen-

sionss × t, with its center located at the discrete coordinates
(k, l) in the hologram plane. It is defined as follows:

A
s,t
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2

, s
2

) , [ −t
2

, t
2

)
0 else.

(6)

Algorithm 1 : Main steps of displaying a hologram as an
intensity reconstruction.

Data: Hologram:U , of resolution(M,N) and sample
size (δm, δn). Reconstruction distance:d.
Wavelength:λ. If a sub aperture is used, the size
(s, t) and location(k, l) is also input.

Result: Intensity image of reconstruction.

if Sub-aperture usedthen1

U ← ApertureAt(U, (s, t), (k, l));2

end3

W = Propagate(U, d, λ, (δm, δn));4

I = ComputeIntensities(W );5

Display intensity imageI;6

Tk,l is an operator that translates the origin of the box aperture
by (−k,−l) to the optical axis of the hologram. This yields
a common image center in the reconstructions. This operation
will however introduce a phase shift in the holographic data,
which in turn will act as a translation of the reconstructed
object. This is counteracted by the exponential in Eqn. 5.

III. I MPLEMENTATION

Algorithm 1 describes a three step method for hologram
view-reconstruction. First, a sub-aperture is selected, corre-
sponding to the desired view. Second, the wave field is propa-
gated the reconstruction distanced. Finally, the intensities are
computed and the resulting image is displayed on screen.

Of these operations, propagation is the most computation-
ally expensive, and the main factor determining performance.
Basing an implementation on the convolution (Eqn. 3) and
direct (Eqn. 4) methods allows for the operations to be broken
down into a set of Fourier transforms and multiplications. For
instanc; the convolution method is described as 1) Fourier
transform, 2) Multiplication of each element in the spectra
by a phase function, and 3) an inverse Fourier transform. The
algorithm has a complexity ofO(n log n), if implemented us-
ing the FFT. In an implementation on a CPU these operations
still perform slowly due to the massive data sizes.

As noted in [16], this operation can be efficiently executed
on a parallel system. In recent years, the stream processor
model [23] has grown more prevalent with the increased utility
of GPUs. Stream processing is based on the observation that,
for certain algorithms, the same numerical operations needto
be executed on a very large set of data repeatedly, in a single
instruction multiple data (SIMD) fashion. This is typically the
case in image processing and computer graphics, which is one
of the reasons why highly parallellized dedicated hardwarein
these areas benefit from the model.

The basic principle of stream processing is to use multiple
processors to execute the samekernelof code on a large set of
data in parallel. Each processor unit executes the same code,
but works independently. Thus large datasets can be processed
as streams much faster than on a serial processor, where it
would typically be implemented in a loop structure. Stream
processing has the most advantage over single thread pro-
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Fig. 2. Principles of stream programming. The same kernel code is loaded
to all processorsP0..P[n−1]. Each Processor works independently on a
stream of fragments from the sourceU . The processed results are stored
on appropriate indices in the destinationW .

cessing if a computationally heavy kernel is to be performed
independently on a large dataset.

The kernel is loaded to a set of virtual threads distributed
between the different processors and the data stream split up
between them, as illustrated in Fig. 2. This is an efficient model
for problems requiring many arithmetical operations, or where
the operations can be performed independently on the elements
of the data.

Modern GPUs are stream processors, often with tens or
hundreds of processors capable of advanced arithmetic and
logic operations. Up until recently graphics processors were
only programmable using graphics APIs. However, tools such
as Brook [24] and CUDA [25] now exist that allow for a more
general programming model. The GPU is thus a cost effective
and efficient choice for high speed numerical computing.

A. Implementation on graphics hardware

The main limitation of a pure GPU based approach to
holographic reconstruction has previously been availablemem-
ory. However, the challenge of implementing a general FFT
method that can perform as well as the highly efficient
libraries for CPUs available has also been a factor [28].
Today graphics boards come equipped with enough memory to
allow reconstruction of digital holograms of sizes matching the
current capture technology. In addition, efficient FFT methods

specially designed for GPU execution has been presented and
implemented [29], [30], [31].

Out of performance concerns we will only consider holo-
grams where the sides sizes are a power of two. Other sizes are
zero-padded to the closest power of two. While this costs some
amount of additional memory it may allow the FFT algorithm,
as well as the kernel planning described below, to optimize
its output. It can be argued that in some special cases the
hologram size may differ significantly from a power of two,
and thus both cause a memory and processing penalty to the
algorithm. However we have observed that in reality modern
digital imaging equipment tend to have resolutions that lie
close to a power of two and thus the padding will have little
practical influence.

Returning to the program outlined in Alg. 1, the
three functions ApertureAt, Propagate and
ComputeIntensities can all be implemented as
stream programs. We will start by discussing propagation
using the direct and convolution methods. Algorithm 2
and 3 describes the steps needed to perform the convolution
approach and direct approach respectively. In both cases, the
functions GPUFFT and GPUIFFT denotes GPU-based FFT
and inverse FFT calls.

While multi-dimensional FFTs are supported natively in
most FFT libraries, the implementation is often more memory
consuming than a set of one dimensional transforms. This is
due to the fact that in order to optimize for speed, the data
may be rearranged in a more cache friendly manner. For a
parallel implementation, such as the one used in this paper,
this may prove even more important. While we will opt for
speed in favor of memory, for real-time reconstruction, there
are situations when processing very large holograms is desired.
In these cases the source data may take up most of the available
GPU memory, and a 2D FFT is infeasible. It is thus also of
interest to consider an alternative low memory approach for
parallel implementations, such as the one described in [16].

This technique basically uses the classic row-column ap-
proach, splitting the full dimensional transform into a series
of 1D FFT calls. However, as the algorithm is executed on a
parallel architecture, the different data vectors are distributed
between multiple processors. Thus, each processor only needs
to allocate memory and optimize for a single 1D FFT. We have
implemented support for both direct 2D FFTs, and the above
outlined sequential transform in our reconstruction methods.
A comparison can be found in Section IV.

In both Algs. 2 and 3,M×N threads are created to execute
the non-FFT kernels, performing phase-shift multiplications
of the data. There is one active thread per data element. As
there are typically fewer processors than data elements each
processor will have a queue of kernels waiting to be executed.
An alternative approach would be to processD

P
elements per

kernel, whereD is the total number of samples andP the
total number of processors. All data is thus processed in one
go. However, such an approach requires several sequential
operations to be performed in the kernel code by a loop.
While our approach forces some sequential execution, due to
an overhead of data elements, this does not occur within the
kernel code. This allows the GPU scheduler to plan ahead
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Algorithm 2 : Pseudocode showing the GPU calls for the
convolution method.
Data: Hologram:U , of resolution(M,N) and sample

size (δm, δn). Reconstruction distance:d.
Wavelength:λ.

Result: Complex valued wave fieldW resulting from
propagatingU a distanced.

W ← GPUFFT(U) ;1

CreateM × N threads ;2

Set kernel described in Alg. 4 as active. ;3

W ← kernel(W ) ;4

W ← GPUIFFT(W ) ;5

Algorithm 3 : Pseudocode showing the GPU calls for the
direct method.
Data: Hologram:U , of resolution(M,N) and sample

size (δm, δn). Reconstruction distance:d.
Wavelength:λ.

Result: Complex valued wave fieldW resulting from
propagatingU a distanced.

CreateM × N threads ;1

Set kernel described in Alg. 5 as active. ;2

W ← kernel(U);3

W ← GPUFFT(W );4

Set kernel described in Alg. 6 as active. ;5

W ← kernel(W );6

due to the independence of the kernel operations. The strategy
also keeps the number of memory operations per kernel to a
minimum, as such operations typically are far more costly than
arithmetic operations on a GPU architecture.

Pseudocode for the convolution approach kernel is presented
in Alg. 4, and the two kernels needed for the direct method
are presented in Algs. 5 and 6. The latter method requires two
different kernels as multiplication by a phase factor is required
in both frequency and spatial domains. The spatial kernel is
loaded and executed first, after which the FFT is performed,
and finally the frequency space kernel is loaded and executed.

In all cases the input is a pointer to the hologram, or
its Fourier spectrum, resolution, sample size, distance and
wavelength, as well as a virtual thread index. The index is
a unique ID provided by the calling API for each kernel
execution. Thus, we do not need to know the specification of
the underlying hardware. The functionIndex2Pos simply
maps between the thread index and a sample position in the
data array. As can be seen, the kernels are only concerned
with one specific element, performing one read and one write
to global memory.

B. View computation

As outlined in Section II, different 3D views of the scene
captured can be reconstructed by considering a sub-window,
acting as an aperture, instead of the whole hologram. The core
of the procedure is described by Eqn. 5. Every sample in the

Algorithm 4 : Kernel performing multiplication of the
phase factors used in the convolution method. The function
Index2Pos returns a unique data element position given a
parallel thread index.
Data: Fourier spectra of hologram:Wf . Hologram

resolution(M,N) and sample size(δm, δn).
Virtual thread indexI. Reconstruction distance:d.
Wavelength:λ.

Result: One sample of the reconstruction Fourier spectra:
Wf (m,n)

(m,n) ← Index2Pos(I) ;1

k ← exp
(

2πid
λ

)

;2

Wf (m,n) ← k × Wf (m,n)3

× exp

{

−πiλd

[

(

m
Mδm

)2

+
(

n
Nδn

)2
]}

;

Algorithm 5 : Kernel performing multiplication of the
inner phase factor used in the direct method. The function
Index2Pos returns a unique sample position given a parallel
thread index.
Data: HologramU . Hologram resolution(M,N) and

sample size(δm, δn). Virtual thread indexI.
Reconstruction distance:d. Wavelength:λ.

Result: One sample of the hologram – phase factor
product:U(m,n)

(m,n) ← Index2Pos(I) ;1

U(m,n) ← U(m,n)2

× exp
{

πi
λd

[

(mδm)
2

+ (nδn)
2

]}

;

Algorithm 6 : Kernel performing multiplication of the
second, Fourier space, phase factor of the direct method.
The function Index2Pos returns a unique sample position
given a parallel thread index.
Data: Fourier spectra of hologram:Wf . Hologram

resolution(M,N) and sample size(δm, δn).
Virtual thread indexI. Reconstruction distance:d.
Wavelength:λ.

Result: One sample of the reconstruction Fourier spectra:
Wf (m,n)

(m,n) ← Index2Pos(I) ;1

Wf (m,n) ← Wf (m,n)2

× exp

{

2πid
λ

− πiλd

[

(

m
Mδm

)2

+
(

n
Nδn

)2
]}

;
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window is phase shifted by multiplication with an exponential
function, and translated to a corresponding window at the
optical axis.

The kernel implementation is straight forward, and the
process is performed in two steps: First the output array is
set to zero. Then the sub-window is copied into the central
region by a kernel that also performs the multiplication with
the exponential. This will create an windowed version of the
hologram, padded out to the original size. These operations
are denoted by the functionApertureAt in in Alg. 1, and
can be performed as a preprocessing stage to the propagation.

C. Intensity computation

After propagation of a given distance, by either the convo-
lution or the direct method, the result is an array of complex
valued data representing the distribution in the reconstruction
plane. In order to display this on screen we need to compute
brightness values and to map these values to the dynamic range
of the screen.

Intensity values can be directly computed from the square
magnitude as

I(m,n) = W (m,n)W (m,n)∗, (7)

where∗ denotes the complex conjugate. However, this may
lead to a poor contrast quality, and thus loss of detail, if used
directly. Instead, we consider a gamma corrected value

I(m,n) = [W (m,n)W (m,n)∗]
γ

, (8)

where γ has the effect of a nonlinear shift of the contrast
distribution. For instance, a value ofγ = 0.5 will give us the
amplitude image.

We also have to consider that the resulting brightness range
may be greater than what is representable on screen. Assuming
that the display buffer intensities are normalized to the range
[0, 1], we map the reconstructed imageI, to screen,S, by

S(m,n) =
I(m,n) − Tmin
Tmax− Tmin

. (9)

In the above equationTmin and Tmax are the upper and
lower brightness thresholds, mapped to0 and 1 respectively.
Changing the thresholds will effectively change the visible
dynamic range of the output.

Equations 8 and 9 have been implemented in a ker-
nel performing the operations on a complex valued array
and rendering an intensity image that can be displayed
on a computer monitor. This is denoted by the stage
ComputeIntensities in Alg. 1. Theγ, Tmin andTmax
parameters can be changed interactively by the user in order
to allow for better on–screen calibration.

D. Implementation details

For the GPU dependent components of our implementation
we have chosen to use CUDA [25], as the API is native to
the NVidia GeForce 8 hardware platform that we are currently
using. We also employ the CUFFT [31] library to perform the
Fourier transforms. The hardware supports vector datatypes up
to float4 natively. The complex numbers were implemented

using thefloat2 data type, requiring a total of 8 bytes per
sample.

After one pass of the main display loop, outlined in Alg. 1,
we will have a floating point intensity image in graphics board
memory. We then use CUDA’s built-in OpenGL interoperabil-
ity to copy the data to a frame buffer for direct display. As
the whole operation is performed in device memory, there is
no latency due to bus transfer speeds.

Finally, we have implemented a graphical user interface
allowing the user to choose reconstruction method and pa-
rameters, such as distance, aperture and view. Thus, for
the first time enabling real-time interactive numerical view-
reconstruction of digital holograms.

IV. RESULTS AND DISCUSSION

We have tested our implementation on a Linux PC with
2 Gigabytes system RAM, AMD Athlon Dual Core 64 bit
processor and a GeForce 8800GTX graphics card with 768
Mbytes on board RAM and 128 stream processors. Fig. 3
shows two images reconstructed by our software. Table I show
a comparison table of average reconstruction times for both
the direct and convolution approaches and hologram sizes up
to 4096 × 4096. The CPU-based methods were implemented
in C++ using the fast FFTW library [32] (v. 3.1.2, single
threaded) on a AMD Athlon 64 X2, 2.3 GHz equipped with
2 Gbytes RAM.

As can be seen from the table, our GPU implementation
of the convolution approach provides a relative speedup of
roughly 100 times compared to the CPU implementation.
Thus, our implementation is capable of performing real-
time view-reconstruction and rendering from modern digital
holographic setups. The GPU version of the direct approach
is still faster, but this is to be expected, as only one FFT
needs to be performed by this algorithm. Note however that
due to two additional multiplicative steps, the direct method
on the CPU actually performs slower than the convolution
approach in our reference implementation. This leads to a
greater relative speedup for the GPU in this case, however
with proper CPU level optimization it can be expected to lie
around the same ratio as for the convolution approach. We
have therefore chosen to compute the relative speedup based
on the convolution approach.

Reconstruction Time (ms)
convolution method direct method

Resolution G(2) G(1) C(2) G(2) G(1) C(2)
512× 512 2.3 3.3 251.4 1.6 2.1 306.3

1024× 1024 7.9 19.8 1060.6 5.5 11.5 1305.0
2048× 2048 47.0 106.8 4550.8 29.4 59.3 5379.7
4096× 4096 204.6 598.6 23530.4 126.2 322.3 23648.1

TABLE I
V IEW-RECONSTRUCTION TIMES IN MILLISECONDS FOR THE

CONVOLUTION METHOD ON GPU (G)AND CPU (C),AND THE DIRECT

METHOD ON GPU. THE TIMES WERE AVERAGED OVER1000RUNS. THE

NUMBER IN PARENTHESIS DENOTES THE DIMENSIONALITY OF THEFFT.

Table I also show results from using a set of 1D FFTs
instead of the full 2D FFT. While this approach is slower
than when using the native 2D FFT, it has the advantage of
consuming much less memory.
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(a)

(b)

Fig. 3. Two reconstructions by our software. (a) The hologram ”LargeScrew”
at a distance of336 mm. (b) The hologram ”TwoScrews” at a distance of
367 mm. Hologram size:2048× 2048 samples. The direct method was used
for both reconstructions.

As described in Section III-A the efficiency of our recon-
struction methods is largely dependent on the FFT imple-
mentation. We currently use the CUFFT library, and while
the 2D FFT is very fast, it is also quite memory demanding.
We have observed that, as a rule of thumb, the FFT planner
allocates three times the hologram size of additional memory.
Thus, as described above, we have implemented an alternative,
sequential approach based on a series of 1D FFTs. While this
approach is much less memory intensive than the direct 2D
FFT, it does not yield the same processing speeds.

In order to evaluate the efficiency of both approaches we
measured for a range of resolutions. Fig. 4 shows a graph of
the execution time for a single 2D FFT for different resolutions
and settings. The number of threads denotes how many parallel
1D FFTs that is using the CUFFT library. In practice one 1D

Fig. 4. Log–linear plot of the execution time of FFT calls at different
resolutions. The 2D FFT has the over all best performance but could be used
on resolutions up to4096 × 4096 due memory constraints. The 1D FFTs
were performed in sequence to achieve a full 2D operation. Thenumber of
threads denote how many rows of the 2D matrix were executed independently
and thus in theory in parallel. The experiments were performedusing CUDA
on a NVidia GeForce 8800GTX graphics card, with 768 Mbytes RAM.

FFT per row or column of the 2D matrix could be performed
independently. We also plot the result of a native 2D FFT.
Not surprisingly, this method outperforms the 1D approach,
however, on our GeForce 8800GTX with 768 megabytes of
memory, we could only perform FFTs of sizes up to4096 ×

4096 before running out of memory. Thus, the approach is
useful for processing large holograms, requiring more memory
than currently available on graphics hardware. The method
improves with the number of threads used for individual FFTs,
but the plot suggests that this will only be up to a certain level,
dependent on the hardware used, and never as good as a pure
2D transform.

Employing more threads will also cost more memory, as an
individual FFT must be planned for each. Fig. 5 show threads
and FFT memory consumption plotted against execution time
for a 2048× 2048 FFT. The vertical and horizontal line show
the constant memory consumption for a 2D FFT. As can
be seen better performance costs some amount of dedicated
memory. It may also be argued, that if using this approach,
there is probably an optimal memory to efficiency relationship.

V. CONCLUSIONS

We have shown that it is possible to perform real-time
reconstruction of digital megapixel holograms using stream
processing on graphics hardware. The GPU-implementation
clearly outperforms a single CPU; with execution times in
the millisecond range, and a speedup of over100 times for a
digital hologram resolution of today’s standard (2048×2048).
For display purposes, rendering directly to the GPU memory is
very beneficial, and avoids unnecessary copying of the frame
buffer data over the system bus.

The main limiting factor for our reconstruction method is
the memory requirements of the CUFFT library. The current
version uses an additional memory allocation of three times
the input array size for 2D complex FFTs. A single hologram
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Fig. 5. Log–linear plot of additional memory usage vs. execution time for a
2048×2048 2D FFT using sequential 1D FFT calls. The lower horizontal axis
shows memory consumption in kilobytes, while the upper denotesthe number
of potential parallel 1D FFTs executed. The thick horizontal and vertical line
denote reference values in the form of memory usage and execution time of a
2D FFT. The experiments were performed using CUDA on a NVidia GeForce
8800GTX graphics card, with 768 Mbytes RAM.

of size4096×4096 require 128 Megabytes which amounts to
one sixth of the total GPU memory we have at our disposal
on our current card. Its 2D FFT plan would thus require 384
Megabytes using CUFFT.

We also investigated the alternative of using several 1D
FFTs as an alternative to the faster 2D approach. From our
tests we conclude that although the native 2D FFT is the
method of choice for our main real-time implementation, the
row-column method of 1D FFTs is a much less memory
demanding alternative. Thus, it is useful for rapid processing
of large holograms at interactive, but not real-time, rates.

Real-time hologram inspection has many attractive appli-
cations in areas such as digital holographic microscopy and
computational holography. As shown in [17] on-line viewing
from a holographic recording setup by reconstructing views
from a digital video signal in real-time is possible with today’s
technology. Our software would be quite suitable for such
an application, and while we expect the performace to be
limited by the CPU to GPU memory transfer speed, and
thus ultimately by the PCI-express bus, it can be expected
to perform in real-time to interactive rates as only a single
transfer per frame is necessary.

Finally, we note that there are numerous ’ping-pong’ Fresnel
based algorithms appearing in the literature mainly with appli-
cations to phase retrieval or twin image reduction [33], [34],
[35], [36]. Often these algorithms are not employed becauseof
their time intensive nature. Due to the fast speed of our Fresnel
transform calculations we believe that the ideas presentedin
this paper will have widespread application in these areas.
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