106 research outputs found

    Enhanced ribosomal association of p27Kip1 mRNA is a mechanism contributing to accumulation during growth arrest

    Get PDF
    p27(Kip1) regulates the decision to enter into S-phase or withdraw from the cell cycle by establishing an inhibitory threshold above which G(1) cyclin-dependent kinases accumulate before activation. We have used the HL-60 cell line to study regulation of p27 as cells withdraw from the cell cycle following treatment with 12-O-tetra-decanoylphorbol-13-acetate (TPA). We found that the amount of p27 is maximal in G(0) cells, lower in G(1) cells, and undetectable in S-phase cells, In contrast to the protein, the amount of p27 mRNA was the same in these populations, suggesting tliat accumulation of p27 during the cell cycle and as cells withdraw hom the cell cycle is controlled by post-transcriptional mechanisms, In S-phase cells, the degradation of p27 appears to predominate as a regulatory mechanism, In G(0) cells, there was an increase in the synthesis rate of p27, Our data demonstrate that, in G(0) cells, accumulation of p27 is due to an increase in the amount of p27 mRNA in polyribosomes

    Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis

    Get PDF
    The Ini1 subunit of the SWI/SNF chromatin remodeling complex suppresses formation of malignant rhabdoid tumors in humans and mice. Transduction of Ini1 into Ini1-deficient tumor-derived cell lines has indicated that Ini1 arrests cell growth, controls chromosomal ploidy, and suppresses tumorigenesis by regulating components of the retinoblastoma (Rb) signaling pathway. Furthermore, conditional inactivation of Ini1 in mouse fibroblasts alters the expression of various Rb-E2F-regulated genes, indicating that endogenous Ini1 levels may control Rb signaling in cells. We have reported previously that loss of one allele of Ini1 in mouse fibroblasts results only in a 15% to 20% reduction in total Ini1 mRNA levels due to transcriptional compensation by the remaining Ini1 allele. Here, we examine the effects of Ini1 haploinsufficiency on cell growth and immortalization in mouse embryonic fibroblasts. In addition, we examine pituitary tumorigenesis in Rb-Ini1 compound heterozygous mice. Our results reveal that heterozygosity for Ini1 up-regulates cell growth and immortalization and that exogenous Ini1 down-regulates the growth of primary cells in a Rb-dependent manner. Furthermore, loss of Ini1 is redundant with loss of Rb function in the formation of pituitary tumors in Rb heterozygous mice and leads to the formation of large, atypical Rb(+/-) tumor cells lacking adrenocorticotropic hormone expression. These results confirm in vivo the relationship between Rb and Ini1 in tumor suppression and indicate that Ini1 plays a role in maintaining the morphologic and functional differentiation of corticotrophic cells

    The cell cycle regulator p27kip1 contributes to growth and differentiation of osteoblasts

    Get PDF
    The cyclin-dependent kinase (cdk) inhibitors are key regulators of cell cycle progression. p27 and p21 are members of the Cip/Kip family of cdk inhibitors and regulate cell growth by inactivating cell cycle stage-specific CDK-cyclin complexes. Because down-regulation of osteoprogenitor proliferation is a critical step for osteoblast differentiation, we investigated expression of p27 and p21 during development of the osteoblast phenotype in rat calvarial osteoblasts and in proliferating and growth-inhibited osteosarcoma ROS 17/2.8 cells. Expression of these proteins indicates that p21, which predominates in the growth period, is related to proliferation control. p27 levels are maximal postproliferatively, suggesting a role in the transition from cell proliferation to osteoblast differentiation. We directly examined the role of p27 during differentiation of osteoprogenitor cells derived from the bone marrow (BM) of p27-/- mice. BM cells from p27 null mice exhibited increased proliferative activity compared with BM cells from wild-type mice and formed an increased number and larger size of osteoblastic colonies, which further differentiated to the mineralization stage. Although p27-/- adherent marrow cells proliferate faster, they retain competency for differentiation, which may result, in part, from observed higher p21 levels compared with wild type. Histological studies of p27-/- bones also showed an increased cellularity in the marrow cavity compared with the p27+/+. The increased proliferation in bone does not lead to tumorigenesis, in contrast to observed adenomas in the null mice. Taken together, these findings indicate that p27 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in bone cells

    Spitzer + VLTI-GRAVITY Measure the Lens Mass of a Nearby Microlensing Event

    Get PDF
    We report the lens mass and distance measurements of the nearby microlensing event TCP J05074264+2447555. We measure the microlens parallax vector πE{\pi}_{\rm E} using Spitzer and ground-based light curves with constraints on the direction of lens-source relative proper motion derived from Very Large Telescope Interferometer (VLTI) GRAVITY observations. Combining this πE{\pi}_{\rm E} determination with the angular Einstein radius θE\theta_{\rm E} measured by VLTI GRAVITY observations, we find that the lens is a star with mass ML=0.495±0.063 MM_{\rm L} = 0.495 \pm 0.063~M_{\odot} at a distance DL=429±21 pcD_{\rm L} = 429 \pm 21~{\rm pc}. We find that the blended light basically all comes from the lens. The lens-source proper motion is μrel,hel=26.55±0.36 masyr1\mu_{\rm rel,hel} = 26.55 \pm 0.36~{\rm mas\,yr^{-1}}, so with currently available adaptive-optics (AO) instruments, the lens and source can be resolved in 2021. This is the first microlensing event whose lens mass is unambiguously measured by interferometry + satellite parallax observations, which opens a new window for mass measurements of isolated objects such as stellar-mass black holes.Comment: 3 Figures and 6 Tables Submitted to AAS Journa

    Spitzer + VLTI-GRAVITY Measure the Lens Mass of a Nearby Microlensing Event

    Get PDF
    We report the lens mass and distance measurements of the nearby microlensing event TCP J05074264+2447555 (Kojima-1). We measure the microlens parallax vector π_E using Spitzer and ground-based light curves with constraints on the direction of lens-source relative proper motion derived from Very Large Telescope Interferometer (VLTI) GRAVITY observations. Combining this π_E determination with the angular Einstein radius θ_E measured by VLTI-GRAVITY observations, we find that the lens is a star with mass M_L = 0.495±0.063 M⊙ at a distance D_L = 429 ± 21 pc. We find that the blended light basically all comes from the lens. The lens-source proper motion is Μ_(rel,hel) = 26.55±0.36 mas yr⁻¹, so with currently available adaptive-optics instruments, the lens and source can be resolved in 2021. This is the first microlensing event whose lens mass is unambiguously measured by interferometry + satellite-parallax observations, which opens a new window for mass measurements of isolated objects such as stellar-mass black holes

    Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada

    Get PDF
    Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the 'classical' age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20±10 yr/cm), whereas lakes in tundra settings accumulate at moderate (mean DT 70±10 yr/cm) to very slow rates, (>100yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9000cal BP (BP=years before AD 1950). From between c. 9000cal BP and c. 6000cal BP, sediment accumulation was relatively rapid (DT of 20-60yr/cm). Accumulation slowed between c. 5500 and c. 4000cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1200cal BP at three lakes. Our research will help inform priors in Bayesian age modeling

    Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1

    Get PDF
    How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1–cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development
    corecore