2,012 research outputs found

    Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2

    Get PDF
    PublishedAtmospheric CO2 concentrations over glacial-interglacial cycles closely correspond to Antarctic temperature patterns. These are distinct from temperature variations in the mid to northern latitudes, so this suggests that the Southern Ocean is pivotal in controlling natural CO2 concentrations. Here we assess the sensitivity of atmospheric CO2 concentrations to glacial-interglacial changes in the ocean's meridional overturning circulation using a circulation model for upwelling and eddy transport in the Southern Ocean coupled with a simple biogeochemical description. Under glacial conditions, a broader region of surface buoyancy loss results in upwelling farther to the north, relative to interglacials. The northern location of upwelling results in reduced CO2 outgassing and stronger carbon sequestration in the deep ocean: we calculate that the shift to this glacial-style circulation can draw down 30 to 60ppm of atmospheric CO2. We therefore suggest that the direct effect of temperatures on Southern Ocean buoyancy forcing, and hence the residual overturning circulation, explains much of the strong correlation between Antarctic temperature variations and atmospheric CO2 concentrations over glacial-interglacial cycles

    Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis.

    Get PDF
    BACKGROUND: In order to advance the development of culture conditions and increase the potential for supporting normal preimplantation embryo development in vitro, it is critical to define the mechanisms that early embryos utilize to survive in culture. We investigated the mechanisms that embryos employ in response to culture medium osmolarity. We hypothesized that mitogen-activated protein kinase (MAPK) pathways mediate responses to hyperosmotic stress by regulating Aquaporin (AQP) 3 and 9 expression as well as embryonic apoptosis. METHODS: Real-time reverse transcription and polymerase chain reaction and whole-mount immunofluorescence were used to determine the relative mRNA levels and protein localization patterns of AQP 3 and 9 after hyperosmotic medium treatment. RESULTS: At 6 and 24 h, a significant increase in Aqp 3 and 9 mRNA was observed in the sucrose hyperosmotic treatment compared with standard medium and glycerol controls. Blockade of MAPK14/11 negated the increase in Aqp 3 and 9 mRNA levels, whereas culture in a MAPK8 blocker did not. Hyperosmotic sucrose treatment significantly increased embryonic apoptosis which was negated in the presence of MAPK8 blocker, but not MAPK14/11 blocker. CONCLUSIONS: MAPK14/11 activation is a component of the rapid adaptive stress response mechanism that includes the effects of AQP mRNA expression and protein localization, whereas the MAPK8 pathway is a regulator of apoptosis

    Species Determination and Quantitation in Mixtures Using MRM Mass Spectrometry of Peptides Applied to Meat Authentication

    Get PDF
    We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of 'corresponding proteins' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are 'corresponding peptides'. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture

    Quantitative changes in intracellular calcium and extracellular-regulated kinase activation measured in parallel in CHO cells stably expressing serotonin (5-HT) 5-HT2A or 5-HT2C receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serotonin (5-HT) 2A and 2C receptors (5-HT<sub>2A</sub>R and 5-HT<sub>2C</sub>R) are involved in a wide range of physiological and behavioral processes in the mammalian central and peripheral nervous systems. These receptors share a high degree of homology, have overlapping pharmacological profiles, and utilize many of the same and richly diverse second messenger signaling systems. We have developed quantitative assays for cells stably expressing these two receptors involving minimal cell sample manipulations that dramatically improve parallel assessments of two signaling responses: intracellular calcium (<it>Ca<sub>i</sub></it><sup>++</sup>) changes and activation (phosphorylation) of downstream kinases. Such profiles are needed to begin to understand the simultaneous contributions from the multiplicity of signaling cascades likely to be initiated by serotonergic ligands.</p> <p>Results</p> <p>We optimized the <it>Ca<sub>i</sub></it><sup>++ </sup>assay for stable cell lines expressing either 5-HT<sub>2A</sub>R or 5-HT<sub>2C</sub>R (including dye use and measurement parameters; cell density and serum requirements). We adapted a quantitative 96-well plate immunoassay for pERK in the same cell lines. Similar cell density optima and time courses were observed for 5-HT<sub>2A</sub>R- and 5-HT<sub>2C</sub>R-expressing cells in generating both types of signaling. Both cell lines also require serum-free preincubation for maximal agonist responses in the pERK assay. However, 5-HT<sub>2A</sub>R-expressing cells showed significant release of <it>Ca<sub>i</sub></it><sup>++ </sup>in response to 5-HT stimulation even when preincubated in serum-replete medium, while the response was completely eliminated by serum in 5-HT<sub>2C</sub>R-expressing cells. Response to another serotonergic ligand (DOI) was eliminated by serum-replete preincubation in both cells lines.</p> <p>Conclusions</p> <p>These data expand our knowledge of differences in ligand-stimulated signaling cascades between 5-HT<sub>2A</sub>R and 5-HT<sub>2C</sub>R. Our parallel assays can be applied to other cell and receptor systems for monitoring and dissecting concurrent signaling responses.</p

    Chimpanzees demonstrate individual differences in social information use

    Get PDF
    Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning

    Predicting Visibility of Aircraft

    Get PDF
    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration

    Testing the acoustic adaptation hypothesis with vocalizations from three mongoose species

    Full text link
    Acoustic signals degrade and attenuate as they propagate through the environment, thus transmitting information with lower efficiency. The acoustic adaptation hypothesis (AAH) states that selection should shape the vocalizations of a species to maximize transmission through their habitat. A specific prediction of the AAH is that vocalizations will transmit better when emitted in their native habitat versus non-native habitats. We tested this prediction using vocalizations of three mongoose species that dwell in structurally different habitats: banded mongooses, Mungos mungo, dwarf mongooses, Helogale parvula, and meerkats, Suricata suricatta. Representative vocalizations of the three species were broadcast and rerecorded in each habitat at six distances from the source. Rerecorded vocalizations were compared to nondegraded calls through spectrogram correlation. Using generalized linear mixed models, we then quantified the differences in transmission fidelity of each species' vocalizations. Overall, we found partial support for the AAH within the mongoose family: habitat type strongly affected sound transmission, but depending on the species, vocalizations did not always transmit best in their native habitat, suggesting various degrees of acoustic adaptation. Vegetation cover within habitat type was also found to have a significant influence on the transmission properties of vocalizations. In addition, we found evidence that by changing their behaviour, either by producing vocalizations at different amplitudes or by choosing a specific calling location, mongooses can reduce sound degradation and attenuation over distance, thereby enhancing their communication efficiency. Our work highlights how habitat features may be key determinants of vocalization structure in mongooses, and is generalizable to other species living in similar conditions. It also suggests that, given a species and habitat, other selective pressures might prevail and limit acoustic adaptation in animal communication systems. Finally, our study provides insights into how mammals can adjust their vocal behaviour to compensate for environmental constraints on the transmission of their vocalizations

    Infant sleep and anxiety disorders in early childhood: Findings from an Australian pregnancy cohort study

    Get PDF
    Emphasis on continuous infant sleep overnight may be driven by parental concern of risk to child mental health outcomes. The Mercy Pregnancy and Emotional Wellbeing Study (MPEWS) examined whether infant sleep at 6 and 12 months postpartum predicts anxiety disorders at 2–4 years, and whether this is moderated by maternal depression, active physical comforting (APC) or maternal cognitions about infant sleep. Data included 349 women and infants. Infant sleep was measured using the Brief Infant Sleep Questionnaire and child anxiety disorders by the Preschool Age Psychiatric Assessment. The risk of developing generalised anxiety or social phobia disorders at 3–4 years was reduced by 42% (p = 0.001) and 31% (p = 0.001), respectively, for a one standard deviation increase in total sleep at 12 months. No other infant sleep outcomes were associated. Maternal depression, APC and cognitions about infant sleep did not significantly moderate these relationships. Focus may need to be on total infant sleep, rather than when sleep is achieved. Highlights: To assess whether infant sleep outcomes (i.e., frequency of nocturnal wakes; nocturnal wakefulness and total sleep per day) at 6 and 12 months predict early childhood anxiety disorders at 3–4 years of age. Maternally reported infant sleep outcomes were not associated with the risk of developing early childhood anxiety disorders at 3–4 years. It may be total infant sleep, irrespective of when sleep occurs or night waking and, independently, active physical comforting that requires further investigation

    T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    Get PDF
    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer
    corecore