52 research outputs found

    Multi-scale characterisation of the 3D microstructure of a thermally-shocked bulk metallic glass matrix composite

    Get PDF
    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods

    Leveraging Motivations, Personality, and Sensory Cues for Vertebrate Pest Management

    Get PDF
    Acknowledgments: We wish to thank Manaaki Whenua – Landcare Research staff, particularly Peter Millard and Bruce Warburton, for facilitating and supporting this research. Thanks to Jenna Bytheway for infographic design. This research was supported by Strategic Science Investment funding from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group, awarded to Manaaki Whenua – Landcare Research. T.W.B. was supported by Marie SkƂodowska-Curie grant number 747120, and A.S. was supported by National Science Foundation grant IOS 1456724.Peer reviewedPublisher PD

    Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species

    Get PDF
    Background: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. Results: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. Conclusions: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches

    Biological invasion costs reveal insufficient proactive management worldwide

    Get PDF
    Funding Information: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017?2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).Peer reviewedPublisher PD

    Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography

    Get PDF
    Synchrotron X-ray microtomography and ptychography were used to characterize the 3D network structure, morphology and distribution of metal carbides in an as-cast IN713LC Ni superalloy. MC typed carbides were found to distribute mainly on the grain boundary between the matrix Îł and Îł' phase. The differences in solidification cooling rate had a minor influence on the volume fraction of the MC type carbides, but significantly affected the carbide size, distribution and network morphology. Depending on the local composition of the remaining liquid phase and geometric constraints, the carbides can form either spherical or strip or network morphologies. The research demonstrated clearly the advantage and technical potential of using the two complementary tomography techniques synergistically to characterize non-destructively complex multiple-phase structures in three dimensional space with a spatial resolution of ~30 nm

    Solidification of Al alloys under electromagnetic pulses and characterization of the 3D microstructures under synchrotron x-ray tomography

    Get PDF
    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field

    MicroCT imaging reveals differential 3D micro-scale remodelling of the murine aorta in ageing and Marfan syndrome

    Get PDF
    Aortic wall remodelling is a key feature of both ageing and genetic connective tissue diseases, which are associated with vasculopathies such as Marfan syndrome (MFS). Although the aorta is a 3D structure, little attention has been paid to volumetric assessment, primarily due to the limitations of conventional imaging techniques. Phase-contrast microCT is an emerging imaging technique, which is able to resolve the 3D micro-scale structure of large samples without the need for staining or sectioning. Methods: Here, we have used synchrotron-based phase-contrast microCT to image aortae of wild type (WT) and MFS Fbn1C1039G/+ mice aged 3, 6 and 9 months old (n=5). We have also developed a new computational approach to automatically measure key histological parameters. Results: This analysis revealed that WT mice undergo age-dependent aortic remodelling characterised by increases in ascending aorta diameter, tunica media thickness and cross-sectional area. The MFS aortic wall was subject to comparable remodelling, but the magnitudes of the changes were significantly exacerbated, particularly in 9 month-old MFS mice with ascending aorta wall dilations. Moreover, this morphological remodelling in MFS aorta included internal elastic lamina surface breaks that extended throughout the MFS ascending aorta and were already evident in animals who had not yet developed aneurysms. Conclusions: Our 3D microCT study of the sub-micron wall structure of whole, intact aorta reveals that histological remodelling of the tunica media in MFS could be viewed as an accelerated ageing process, and that phase-contrast microCT combined with computational image analysis allows the visualisation and quantification of 3D morphological remodelling in large volumes of unstained vascular tissues

    Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species

    Get PDF
    Background. Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. Results. We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. Conclusions. Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches

    Utility of In Vivo Transcription Profiling for Identifying Pseudomonas aeruginosa Genes Needed for Gastrointestinal Colonization and Dissemination

    Get PDF
    Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P. aeruginosa in the drinking water used to colonize the mice. Genes associated with biofilm formation and type III secretion (T3SS) had markedly increased expression in the GI tract. A non-redundant transposon library in P. aeruginosa strain PA14 was used to test mutants in genes identified as having increased transcription during in vivo colonization. All of the Tn-library mutants in biofilm-associated genes had an attenuated ability to form biofilms in vitro, but there were no significant differences in GI colonization and dissemination between these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI colonization among these mutant strains and their WT counterparts, whereas rates of survival following dissemination were significantly decreased in mice infected by the T3SS mutant strains. However, there was a variable, strain-dependent effect on overall survival between parental and T3SS mutants. Thus, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia

    The ATP state of a mitotic Kinesin-5 bound to microtubules

    Get PDF
    The mitotic spindle is essential for faithful cell division. It is built from microtubules and is orchestrated by many proteins, including members of the kinesin superfamily. Kinesin-5 motors are essential for mitosis in many organisms and are involved in formation and maintenance of spindle bipolarity. Kinesin-5s share some properties with other kinesins including the ability to move - albeit slowly - towards the plus ends of microtubules. However, kinesin-5s have a number of unique properties, and are also of interest for cancer treatment because kinesin-5-specific small molecule inhibitors have been identified and are in clinical trials. Outstanding mechanistic questions about kinesin-5 motors relate to their interaction with microtubules. We set out to understand this interaction using cryo-electron microscopy and image processing. Cryo-electron microscopy is uniquely suited to this goal since microtubules are too large and heterogeneous to be studied by other structural techniques. Using the motor domain from Klp61f (the Drosophila kinesin-5), we imaged microtubules bound by the motor in an ATP-like state and calculated the structure of the complex at 10Å resolution. At this resolution, we are able to see the density associated with most α-helices in both the motor and the microtubule and visualise the motor in a tight-binding, AMPPNP conformation. The docked tubulin structure shows an excellent fit to our map, but available kinesin-5 crystal structures do not match the conformation of the motor in our maps, indicating that microtubule binding induces a conformational change in the kinesin-5 motor. Thus, calculation of kinesin-microtubule structures are essential for revealing the precise mechanism by which motors use energy from ATP and microtubule binding to generate force. Our structure also provides insight into the mechanisms by which anti-cancer drugs elicit their therapeutic effect
    • 

    corecore