45,599 research outputs found

    Fractional Quantum Hall Physics in Jaynes-Cummings-Hubbard Lattices

    Get PDF
    Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, and in-situ tuning of parameters. We show how to realise strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realised by dynamic tuning of the cavity resonances. We demonstrate the existence of Fractional Quantum Hall states by com- puting topological invariants, phase transitions between topologically distinct states, and Laughlin wavefunction overlap.Comment: 5 pages, 3 figure

    Organocatalytic Lewis base functionalisation of carboxylic acids, esters and anhydrides via C1-ammonium or azolium enolates

    Get PDF
    This tutorial review highlights the organocatalytic Lewis base functionalisation of carboxylic acids, esters and anhydrides via C1-ammonium/azolium enolates. The generation and synthetic utility of these powerful intermediates is highlighted through their application in various methodologies including aldol-lactonisations, Michael-lactonisations/lactamisations and [2,3]-rearrangements.Publisher PDFPeer reviewe

    Tensor Networks with a Twist: Anyon-permuting domain walls and defects in PEPS

    Full text link
    We study the realization of anyon-permuting symmetries of topological phases on the lattice using tensor networks. Working on the virtual level of a projected entangled pair state, we find matrix product operators (MPOs) that realize all unitary topological symmetries for the toric and color codes. These operators act as domain walls that enact the symmetry transformation on anyons as they cross. By considering open boundary conditions for these domain wall MPOs, we show how to introduce symmetry twists and defect lines into the state.Comment: 11 pages, 6 figures, 2 appendices, v2 published versio

    Contrast sensitivity of insect motion detectors to natural images

    Get PDF
    How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein–Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons under many conditions but fail to explain the apparent lack of spatial pattern and contrast dependence observed in freely flying bees and flies. To investigate this apparent discrepancy, we recorded intracellularly from horizontal-sensitive (HS) motion detecting neurons in the hoverfly while displaying moving images of natural environments. Contrary to results obtained with grating patterns, we show these neurons encode the velocity of natural images largely independently of the particular image used despite a threefold range of contrast. This invariance in response to natural images is observed in both strongly and minimally motion-adapted neurons but is sensitive to artificial manipulations in contrast. Current models of these cells account for some, but not all, of the observed insensitivity to image contrast. We conclude that fly visual processing may be matched to commonalities between natural scenes, enabling accurate estimates of velocity largely independent of the particular scene

    Unexpected evolutionary proximity of eukaryotic and cyanobacterial enzymes responsible for biosynthesis of retinoic acid and its oxidation

    Get PDF
    Biosynthesis of retinoic acid from retinaldehyde (retinal) is catalysed by an aldehyde dehydrogenase (ALDH) and its oxidation by cytochrome P450 enzymes (CYPs). Herein we show by phylogenetic analysis that the ALDHs and CYPs in the retinoic acid pathway in animals are much closer in evolutionary terms to cyanobacterial orthologs than would be expected from the standard models of evolution

    Implications of very rapid TeV variability in blazars

    Full text link
    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

    Get PDF
    Domain walls in ferromagnetic nanowires are important for proposed devices in recording, logic, and sensing. The realization of such devices depends in part on the ability to quickly and accurately control the domain wall from creation until placement. Using micromagnetic computer simulation we demonstrate how a combination of externally applied magnetic fields is used to quickly inject, move, and accurately place multiple domain walls within a single wire for potential recording and logical operations. The use of a magnetic field component applied perpendicular to the principle domain wall driving field is found to be critical for increased speed and reliability. The effects of the transverse field on the injection and trapping of the domain wall will be shown to be of particular importance
    corecore