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Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit

convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to

realize strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of

an effective magnetic field. The effective field is realized by dynamic tuning of the cavity resonances. We

demonstrate the existence of Laughlin-like fractional quantum Hall states by computing topological

invariants, phase transitions between topologically distinct states, and Laughlin wave function overlap.
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Quantum systems with highly correlated states exhibit
an exponential growth of Hilbert space with the number of
particles, making the study of arbitrary states of even
modest systems computationally intractable. This problem
has motivated efforts in the field of quantum emulation [1].
A quantum emulator is designed to replicate the physics of
some target system. Such emulators require scalable and
convenient state preparation and measurement, and control
over single- and many-body interactions. Proposals for
emulation platforms include ultracold atoms, superconduc-
tors, and superfluids [2–4]. Another interesting platform is
coupled atom-cavity systems [5–9] and there has been
significant progress toward realizing this goal [10–13].
Here, we explore the physics of the fractional quantum
Hall effect (FQHE) as it relates to atom-cavity systems.

Thirty years after their discovery, the integer [14] and
fractional [15] quantum Hall effects are still the focus of
intense theoretical and experimental attention [16,17]. The
FQHE relies on the presence of particle-particle interac-
tions to form highly correlated states. These states can
exhibit anyonic, and sometimes non-Abelian, excitations
that are explicitly nonlocal. As such, the investigation of
large systems suffers strongly from the exponential explo-
sion in Hilbert space. While there exist exact solutions for
some FQHE systems, such as the Laughlin ansatz [18],
these have yet to be observed directly in experiment. For
this reason, emulation of the FQHE, particularly emulating
the strong magnetic fields required, has become a major
topic of interest in the scientific community [19–22].

Here, we show the existence of Laughlin-like FQHE
states in the Jaynes-Cummings-Hubbard (JCH) model
[5–7] in the presence of an artificial magnetic field.
These states constitute new, strongly correlated states of
light. A JCH lattice consists of an array of coupled
photonic cavities, with each cavity mode coupled to a
two-level atom [Figs. 1(a) and 1(b)]. JCH systems promise
unparalleled control and readout of the full quantum
mechanical wave function. The JCH model is predicted
to exhibit a number of solid state phenomena, including

Mott or superfluid phases [6], semiconductor physics [23],
Josephson effect [24], metamaterial properties [25], and
Bose-glass phases [26].
We begin by introducing the JCH model, and discuss

how an artificial magnetic field can be created in a photonic
cavity system. To demonstrate FQHE physics, we compute
the ground states for small systems. These ground states
are compared to a modified Laughlin ansatz, and their
topology is investigated.

FIG. 1 (color online). (a) Schematic of a square JCH lattice
with a constant effective magnetic field. Photons moving around
a plaquette acquire a phase ��. (b) A single-mode photonic
cavity with frequency ! coupled to a two-level atom with
strength �. (c) Scheme for breaking TRS in photonic cavities:
a potential V ¼ ½VDC þ VAC sinð!rftþ��yÞ�x (x and y in units
of the lattice spacing) is applied to the cavities (indicated by
thick vertical green arrows) by dynamically tuning !. The phase
offset, ��, along y results in the synthetic magnetic field seen
in (a).
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Each cavity in the JCH lattice is described by the Jaynes-
Cummings (JC) Hamiltonian

HJC ¼ !Lþ ��þ�� þ �ð�þaþ ��ayÞ; (1)

where a is the photonic annihilation operator, �� are the
atomic raising and lowering operators, � the atom-photon
detuning, � the coupling energy, and @ ¼ 1. The state
jgðeÞ; ni, where n is the number of photons, and gðeÞ are
the ground (excited) state of the atom, form the single
cavity basis. HJC commutes with the total excitation num-
ber operator, L ¼ ayaþ �þ��. Therefore, the total
excitations in the cavity, ‘, is a good quantum number.
The eigenstates of Eq. (1) are termed polaritons, super-
positions of atomic and photonic excitations, and are a
function of ‘ and �=�.

The JCH model describes a tight-binding JC lattice:

HJCH ¼ HJC þ K ¼ XN
i

HJC
i �X

hi;ji
�ija

y
i aj; (2)

where �ij is the tunneling rate between cavities i and j and

the sum over hi; ji is between nearest neighbors only.
For large detuning (j�j � �), eigenstates separate out

into either atomic or photonic modes. In this limit, the
photonic or atomic mode can be adiabatically eliminated.
Eliminating the atomic modes, the photonic mode has a
weak Kerr-type photon-photon repulsion [8] and the
exchange of energy between atomic and photonic modes
is strongly suppressed. However, virtual processes lead to
effective interactions in the photonic and atomic submani-
folds. Photons have an atomic mediated nonlinear on-site
repulsion, making the JCH model equivalent to the Bose-
Hubbard (BH) model [27]. Atomic modes are coupled with
the effective hopping rate �eff

ij ¼ �ij�
2=�2 [28]. As the

atomic modes are restricted to two levels, this is effectively
a hard-core boson field for atomic states, in contrast to the
weakly interacting photon field.

The QHE occurs in a 2DEG in the presence of a per-
pendicular magnetic field, which breaks time reversal
symmetry (TRS). Any mechanism that breaks TRS mani-
fests in the Hamiltonian as a vector potential. An artificial
magnetic field may then be realized via the introduction of
some TRS breaking interaction. Constant rotation or linear
acceleration are the classic examples, leading to constant
synthetic magnetic and electric fields, respectively. Cho
et al. [29] propose a scheme for TRS breaking in multi-
mode cavities with far detuned atoms. Fang et al. [30] use
magneto-optical resonators in photonic crystals to break
TRS, and Koch et al. [31,32] have recently shown TRS
breaking in the context of circuit quantum electrodynamics
(QED), via the introduction of a special passive coupling
element between microwave resonator junctions. Here,
we adapt the methodology proposed by Kolovsky [21] to
cavity QED, where photon-assisted tunneling is used
to break TRS. An electric field with both dc and ac

components is applied across one of the lattice axes
[Fig 1(c)]. Introducing a phase offset, ��, in the ac field
along the other axis results in the desired complex cou-
pling, 2�� ¼ ��. The presence of the two fields also
leads to modified strengths of �, �, and �, which can be
tuned appropriately to recover the Hamiltonian in Eq. (1).
The dependence of these parameters on the field is non-
trivial, but follows the prescription in [21]. Photons do not
respond to electric fields; however, a gradient in the cavity
frequency has an equivalent effect. Recently, cavities with
tunable resonances have been fabricated [33,34]. This
process is achieved by the inclusion of an intracavity
Josephson junction, which changes the cavity boundary
conditions, and can be tuned via a magnetic field.
Transmission-line resonator experiments [33] have shown
!rf can be driven at Oð103Þ times the cavity dissipation
frequency. This ratio provides sufficient time to observe
FQH physics.
A magnetic field is defined by a vector potential AðxÞ

and is introduced into the Hamiltonian via the minimal
substitution, p ! p� qAðxÞ. On a tight-binding lattice, a
vector potential A gives rise to a complex hopping rate

�ij ! �ije
i2��ij , where 2��ij ¼

Rrj
ri AðrÞdr. As in the con-

tinuum case, gauge symmetry implies that the only physi-
cally important parameter is the total phase, 2��, picked
up around a closed loop, where � ¼ �=�0 is the fraction
of flux quanta through the loop. A constant magnetic field
in the z direction corresponds to a constant � for all
plaquettes on the lattice. Factors of 2� in the phase around
a loop are physically inconsequential, so we only need
consider � 2 ð0; 1Þ. In a lattice, the effect of larger mag-
netic field strengths saturates, as distinct from the contin-
uum case, where the cyclotron frequency, proportional to
the magnetic field, has no upper bound.
Ignoring the JC term in Eq. (1), the spectrum for the

kinetic term, K, is given by solutions to Harper’s equation,
resulting in the famous Hofstadter butterfly [35], a fractal
structure that has q bands at � ¼ p=q, ðp; qÞ 2 Z. For a
single excitation on the JCH lattice, the Shrödinger
equation is

X
i

Ec i ¼
XN
i

½HJCc i � �Kijð�Þc j�: (3)

Substituting an eigenvector c K
i of K with energy ki into

Eq. (3) yields a single-site Hamiltonian:

HJCðkÞ ¼ HJC
0 þ ki�a

ya;

which is transformed to HJC
0 by � ! �þ ki. Thus, the

energies and eigenstates are

Ei;� ¼ �ð�þ EH
i Þ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� EH

i Þ2=4;
q

c i;� ¼ c K
i � c JC� ð�� ki�Þ:

When the detuning is small (� � 0), there are two
squashed Hofstadter butterflies with a gap [Fig. 2(a)].
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As the relative JC interaction strength � decreases, the two
parts converge to recover the original butterfly.

As previously discussed, a large detuning separates out
the atomic and photonic states, as shown in Fig. 2. The
spectrum is a butterfly with width �4� centered around
��2=�, corresponding to the photonic part, and one with
width �4�2=� centered around �þ �2=� [Fig. 2(b)].

The FQHE occurs for systems at sufficiently low tem-
peratures where the flux filling factor � ¼ Np=N� is some

nonintegral rational � ¼ p=q, with Np particles and N�

total flux quanta. Here, particles lie predominantly in the
lowest Landau level (LLL). When there is an interparticle
interaction, the ground state has long-range off-diagonal
order and an energy gap.

We study the FQHE on a JCH lattice with periodic
boundary conditions to avoid edge effects and focus on
the � ¼ 1=2 state, which is the most stable and accessible
fraction for bosons, compared to the � ¼ 1=3 found in the
electronic case. Choosing a lattice of dimensions Lx and Ly

and the number of excitations Np fixes � ¼ 2Np=LxLy. As

the state space grows quickly, we are constrained to the
small systems in Table I.

The simplest FQHE states are described by the Laughlin
ansatz, which is an exact solution for particles in a mag-
netic field with a contact interaction, and � ¼ 1=q. Thus,
for a lattice where the interparticle interaction is only on
site, such wave functions can be very good approximations

to the true ground state. The excitations of these states have
Abelian anyonic statistics.
The Laughlin wave function with periodic boundary

conditions is

�Lð�zÞ / FcmðZÞfrelð�zÞ
Y
i

c L
i ; (4)

where FcmðZÞ is a function of the center of mass Z ¼PNp

i zi, and frelð�zÞ depends only on the relative particle
separations:

FcmðZÞ ¼ �
Np=qþ ðN� � 2Þ=2q

�ðN� � 2Þ=q

" #
q
Z

Lx

��������iq Ly

Lx

� �
;

frelð�zÞ ¼
YNp

i<j

�1
zi � zj
Lx

��������i Ly

Lx

� �
q

; (5)

where � is the generalized Jacobi theta function [37], and
�1 the odd theta function. c L

i are the single-particle states

e�y2i =4 of the LLL.
For bosons (fermions) q must be even (odd) so that �

has the appropriate symmetry. We define a version of the
Laughlin wave function for states on a JCH lattice by
replacing the single-particle Landau wave functions c L

with a corresponding single-polariton JCH wave function.
This approximation allows the computation of the overlap
between the explicit ground state of HJCHð�Þ and the
Laughlin ansatz. Direct product states of single JCH states
are not defined at points with multiple excitations; how-
ever, as �ð�zÞ ¼ 0 for any zi ¼ zj, the issue is avoided.

Significant overlap between our numerical results and the
Laughlin ansatz can be a good indication of the FQHE. In
Fig. 3(b), the overlap is shown as a function of � for each
configuration. In the hard-core boson limit (� � 0), our
results match those found in Ref. [38]. As the on-site
interaction is reduced, multiple site occupancy can occur,
and overlaps with the trial wave function decrease. To fully
quantify the ground state, two additional quantities need to
be computed: (i) the topology of the state and (ii) the energy
gap. The Chern number quantifies the topology and pro-
vides an unambiguous indication of FQHE physics [39]:

C1 ¼ 1

2�

Z
d�x�y

�
@�

@�x

��������@�

@�y

�
�

�
@�

@�y

��������@�

@�x

�
; (6)

where �x;y are the generalized periodic boundary conditions

on the lattice:

tixðLxÞ� ¼ �ei�x tiyðLyÞ� ¼ �ei�y (7)

with tix;y the x and y magnetic translation operators on

particle i. Varying �x;y induces an electric field on the

surface of the lattice, leading to the relationship between
the Hall conductance and Chern number via the Kubo
formula: �H / C1 (see Ref. [39] for a full discussion).
Hence, the topology of the ground state with periodic
boundary conditions is directly related to the quantization

FIG. 2 (color online). Single particle spectrum of the JCH
lattice with (a) � ¼ 0 and (b) � ¼ 3. In each case � ¼ 1 and
� ¼ 1. The spectra comprise two transformed Hofstadter but-
terflies. Color indicates the projection into the photonic modes.

TABLE I. Results for systems of size Lx � Ly sites with Np

excitations. All systems have C1 ¼ 1=2 below the transition
strength � ¼ �c. Also shown are the Hilbert space dimensions
[36] DimðHÞ and the Laughlin overlap.

Lx � Ly Np DimðHÞ � Laughlin Transition(�c)

overlap

i 4� 4 2 512 0.25 0.89

ii 5� 5 2 1250 0.16 0.99 �1:1
iii 6� 6 2 2592 0.11 0.99 2.5

iv 4� 4 3 5472 0.37 0.29 �9:1
v 5� 5 3 20 850 0.24 0.98 �3:8
vi 6� 6 3 62 232 0.17 0.99
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of the Hall conductance in the edged geometry. This mea-
sure provides a means of classifying the ground state when
the Laughlin ansatz is no longer a good representation. This
circumstance occurs when lattice effects become signifi-
cant, such as with large �, when the single-particle states
deviate significantly from the continuum LLLs. Hafezi
et al. [38] have found Chern numbers for states in the BH
model.

The degenerate ground states, �0ð�Þ, define a principal
fiber bundle over the T2 manifold. The Chern number
classifies the homotopy class of the fiber bundle, which is
a topological invariant. That is, the Chern number is in-
sensitive to small perturbations relative to the energy gap.
Only if the gap closes can the transition to topologically
different states occur. Explicit computation of Eq. (6) is
computationally intensive. We instead use the method first
proposed in [40] and used in [38], which allows for effi-
cient computation of the Chern number in the presence of
degeneracies. In this method, a phase is defined for the
ground state at each �x;y with respect to two reference

states. The Chern number is given as the signed sum of
the vortices that occur at the zeros of the overlap with one
of the reference states.

Figures 3(a) and 3(c) plot the energy gap and Chern
number, respectively, as a function of�. Both indicate that,

for some lattice configurations, a transition occurs from the
FQHE state to some uncorrelated states. In the JCH model
(and BH), the discrete lattice gives rise to pressure in the
system. Competition between this pressure and the on-site
repulsion leads to a topological phase transition. In the
limit of weak interactions, the pressure dominates, and
the ground state is defined by single-particle behavior.
Between these two limits, the energy gap closes at a single
point in momentum space, marking the transition to a
fractional state. Shown in Table I for a range of lattice
configurations (i–vi) is the Laughlin wave-function overlap
and the location of the value of � at which the transition
occurs. We find that in the case of configurations i and vi,
no such transition occurs due to an exact degeneracy in the
single-particle energy spectrum. Before the transition, the
ground state Chern number is 1=2. When the gap closes,
the Chern number changes discretely to the noninteracting
state. The Chern number for the system is then the sum of
Chern numbers for single particles, given by solutions to
the Diophantine equation C1 ¼ sq=p� 1=q, ðs; C1Þ 2 N
[41]. We find this to be the case for configurations ii, vii and
v. For iii, C1 is undefined due to the presence of level
crossings, as we have also observed in the case of the BH
model. The question of whether these transitions persist in
the thermodynamic limit is still an open question [38].
The proposed system can potentially be implemented in

any cavity QED framework. However, circuit QED sys-
tems are the most promising, as they exhibit the largest
atom-photon interactions relative to cavity Q. With coher-
ence times for qubits approaching 10 	s [42] and coupling
strengths � 102 MHz [43], FQHE states on small lattices,
on the order of 15 sites, could be produced.
We have shown that many of the phenomena associated

with the FQHE can be realistically emulated in cavity QED
systems. Cavity lattices allow direct inspection of quantum
states, which offers an unprecedented window into the
physics of the QHE and topological phases. The cavity
QED framework also allows for very broad control over the
system’s parameters and is readily extensible to more
complicated configurations. For example, photons can be
given an effective three-body contact interaction [44].
Three-body interactions in the electronic QHE system
can lead to Pfaffian states [45]. These states have non-
Abelian statistics and are a basis for the description of the
� ¼ 5=2 quantum Hall plateau. An implementation of the
system considered in this Letter is an exciting prospect for
the near future and will provide crucial insight into the
physics of the quantum Hall effect.
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