473 research outputs found

    Aesthetics and subjectivity

    Get PDF
    This new, completely revised and re-written edition of aesthetics and subjectivity brings up to date the original book's account of the path of German philosophy from Kant, via Fichte and Holderlin, the early Romantis, Schelling, Hegel, Schleimacher, to Nietzsche, in view of recent historical research and contemporary arguments in philosophy and theory in the humanities. The original book helped make subjectivity, aesthetics, music and language a significant part of debate in the humanity. Bowie develops the approaches to these areas in relation to new theoretical advances which bridge the divide between the continental and analytical traditions of philosophy. In light of the huge growth of interest in German philosophy as a resource for re-thinking both literary and cultural theory, and contemporary philosophy, aesthetics and subjectivity will be indispensable reading for students and teachers in all humanities subjects, from literature, to philosophy, to music and beyond

    FLOW INJECTION WITH CHEMILUMINESCENCE DETECTION FOR THE DETERMINATION OF IRON IN SURFACE ATLANTIC WATERS

    Get PDF
    This thesis describes the design, optimisation and shipboard deployment of a flow injection - chemiluminescence (FI-CL) technique for the determination of iron (Fe) in seawater. Chapter One presents an overview of the marine biogeochemistry of Fe, including its speciation, sources and sinks, abundance and limitation for phytoplankton growth in the Wodd*s oceans. Current analytical methods for the determination of Fe in natural waters are also reviewed. Chapter Two reports the instrumental development of the FI - CL method. Each component is described and its suitability to the flow manifold discussed. Different CL detection systems are evaluated and a charge coupled device used to investigate the spectral profile of the Fe-catalysed luminol reaction. Automation of the FI manifold is also detailed along with acquisition of CL signals. Chapter Three details the optimisation of a FI - CL procedure for the determination of Fe in seawater. Reagent clean-up techniques, blank procedures and a standard addition operating routine are detailed. Fe(III) reduction using sulphite is treated theoretically. Matrix effects are investigated and the synthesis of an 8-hydroxyquinoline resin used for in-line matrix elimination and preconcentration is reported. The optimised method is selective to Fe(II+IIl) in the linear range 0.04-10 nM, with a precision of 3.2% (n=5) for a LO nM standard and a limit of detection (3s) of 40 pM for a load time of 1 min. Chapter Four presents the results of an investigation into the kinetic effect of Fe on luminol CL using the continuous addition of reagent (CAR) technique. Instrumental and chemical parameters are optimised, interferences investigated and the CAR-CL technique compared with alternative flow configurations. In Chapter Five, the application of the F - CL method to the shipboard determination of Fe in the surface North and South Atlantic (SO'^N to 50°S) is presented. Data are reported for samples collected from the upper water column (<200 m) in eight different biogeochemical provinces, which represent coastal, upwelling and oligotrophic regions of the Adbntic Ocean. Total dissolvable iron (unfiltered, TD-Fe) levels range ftom <0.1 to 6.1 nM and indicate that high and spatially variable TD-Fe (>2 nM) concentrations exist in Equatorial and tropical North Atlantic regions influenced by atmospheric deposition from the West African continent. Away from strong input mechanisms, TD-Fe concentrations in the upper water column average 0.6 nM. Input sources are fingerprinted via correlation with other trace metals (Al, Co, Ni), nutrients and hydrography, whilst active biological uptake is shown to be the dominant sink. TD-Fe vertical distributions through the upper mixed layer display strong relationships with chlorophyll a concentrations, and measurements in the deep chlorophyll maximum of the South Atlantic oligotrophic gyre show that, despite elevated nitrate at such depths, Fe concentrations are at a minimum (ca. 0.1 nM) and may be low enough to (co-)limit phytoplankton growth.Centre for Coastal and Marine Sciences - Plymouth Marine Laborator

    Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF activation

    Get PDF
    Viruses are detected by different classes of pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-like helicases. Engagement of PRRs leads to activation of interferon (IFN)-regulatory factor 3 (IRF3) and IRF7 through and TBK1 and consequently IFN-β induction. Vaccinia virus (VACV) encodes proteins that manipulate host signalling, sometimes by targeting uncharacterised proteins. Here, we describe a novel VACV protein, K7, which can inhibit PRR-induced IFN-β induction by preventing TBK1/IKKε-mediated IRF activation. We identified DEAD box protein 3 (DDX3) as a host target of K7. Expression of DDX3 enhanced Ifnb promoter induction by TBK1/IKKε, whereas knockdown of DDX3 inhibited this, and virus- or dsRNA-induced IRF3 activation. Further, dominant-negative DDX3 inhibited virus-, dsRNA- and cytosolic DNA-stimulated Ccl5 promoter induction, which is also TBK1/IKKε dependent. Both K7 binding and enhancement of Ifnb induction mapped to the N-terminus of DDX3. Furthermore, virus infection induced an association between DDX3 and IKKε. Therefore, this study shows for the first time the involvement of a DEAD box helicase in TBK1/IKKε-mediated IRF activation and Ifnb promoter induction

    Analytical Intercomparison Between Flow Injection-Chemiluminescence and Flow Injection-Spectrophotometry for the Determination of Picomolar Concentrations of Iron in Seawater

    Get PDF
    A lab- and ship-based analytical intercomparison of two flow injection methods for the determination of iron in seawater was conducted, using three different sets of seawater samples collected from the Southern Ocean and South Atlantic. In one exercise, iron was determined in three different size-fractions (\u3c 0.03 &μm, \u3c 0.4 μm, and unfiltered) in an effort to better characterize the operational nature of each analytical technique with respect to filter size. Measured Fe concentrations were in the range 0.19 to 1.19 nM using flow injection with luminol chemiluminescence detection (FI-CL), and 0.07 to 1.54 nM using flow injection with catalytic spectrophotometric detection with N, N-dimethyl-p-phenylenediamine dihydrochloride (FI-DPD). The arithmetic mean for the FI-CL method was higher (by 0.09 nM) than the FI-DPD method for dissolved (\u3c 0.4 μm) Fe, a difference that is comparable to the analytical blanks, which were as high as 0.13 nM ( CL) and 0.09 nM (DPD). There was generally good agreement between the FI-CL determinations for the \u3c 0.03 μm size fraction and the FI-DPD determinations for the \u3c 0.4 μm size fraction in freshly collected samples. Differences in total-dissolvable ( unfiltered) Fe concentrations determined by the two FI methods were more variable, reflecting the added complexity associated with the analysis of partially digested particulate material in these samples. Overall, however, the FI-CL determinations were significantly (P = 0.05) lower than the FI-DPD determinations for the unfiltered samples. Our results suggest that the observed, systematic inter-method differences reflect measurement of different physicochemical fractions of Fe present in seawater, such that colloidal and/or organic iron species are better determined by the FI-CL method than the FI-DPD method. This idea is supported by our observation that inter-method differences were largest for freshly collected acidified seawater, which suggests extended storage (\u3e6 months) of acidified samples as a possible protocol for the determination of dissolved iron in seawater

    TLR3 in antiviral immunity: key player or bystander?

    Get PDF
    Toll-like receptor 3 (TLR3), which recognizes double-stranded (ds)RNA, was the first identified antiviral TLR and, because dsRNA is a universal viral molecular pattern, TLR3 has been assumed to have a central role in the host response to viruses. However, this role has recently been questioned by in vivo studies and the discovery of several other antiviral pattern-recognition receptors. In this review, the function of TLR3 in the context of these other receptors, namely TLR7, 8 and 9 and the newly identified dsRNA-receptor retinoic-acid inducible gene-I (RIG-I) is discussed. Also, recent research concerning the expression profile of TLR3, its evasion by viruses and a potential role in crosspriming is addressed, which reveals a clearer appreciation of the contribution of TLR3 to antiviral immunity

    Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence

    Get PDF
    Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like-interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain-containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain-containing adaptor inducing IFN-beta (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor kappaB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-beta by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence

    Concentrations of dissolved iron and dissolved iron(II) from R/V Knorr cruises KN199-04 and KN204-01 in the Subtropical northern Atlantic Ocean from 2010-2011 (U.S. GEOTRACES NAT project)

    Get PDF
    Dataset: GT10-11 - dFe and dFe-IIThis dataset includes concentrations of dissolved iron and dissolved iron(II) from R/V Knorr cruises KN199-04 and KN204-01 in the Subtropical northern Atlantic Ocean from 2010-2011 (U.S. GEOTRACES NAT project). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3826NSF Division of Ocean Sciences (NSF OCE) OCE-092728

    Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals

    Get PDF
    The availability of iron controls primary productivity in large areas of the Southern Ocean. Iron is largely supplied via atmospheric dust deposition, melting ice, the weathering of shelf sediments, upwelling, sediment resuspension, mixing (deep water, biogenic, and vertical mixing) and hydrothermal vents with varying degrees of temporal and spatial importance. However, large areas of the Southern Ocean are remote from these sources, leading to regions of low primary productivity. Recent studies suggest that recycling of iron by animals in the surface layer could enhance primary productivity in the Southern Ocean. The aim of this review is to provide a quantitative and qualitative assessment of the current literature on pelagic iron recycling by marine animals in the Southern Ocean and highlight the next steps forward in quantifying the retention and recycling of iron by higher trophic levels in the Southern Ocean. Phytoplankton utilize the iron in seawater to meet their metabolic demand. Through grazing, pelagic herbivores transfer the iron in phytoplankton cells into their body tissues and organs. Herbivores can recycle iron through inefficient feeding behavior that release iron into the water before ingestion, and through the release of fecal pellets. The iron stored within herbivores is transferred to higher trophic levels when they are consumed. When predators consume iron beyond their metabolic demand it is either excreted or defecated. Waste products from pelagic vertebrates can thus contain high concentrations of iron which may be in a form that is available to phytoplankton. Bioavailability of fecal iron for phytoplankton growth is influenced by a combination of the size of the fecal particle, presence of organic ligands, the oxidation state of the iron, as well as biological (e.g., remineralization, coprochaly, coprorhexy, and coprophagy) and physical (e.g., dissolution, fragmentation) processes that lead to the degradation and release of fecal iron. The flux of dissolved iron from pelagic recycling is comparable to other sources in the region such as atmospheric dust, vertical diffusivity, vertical flux, lateral flux and upwelling, but lower than sea ice, icebergs, sediment resuspension, and deep winter mixing. The temporal and seasonal importance of these various factors requires further examination

    Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)

    Get PDF
    Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles
    corecore