406 research outputs found

    Neuroimaging Biomarkers and Cognitive Function in Non-CNS Cancer and Its Treatment: Current Status and Recommendations for Future Research

    Get PDF
    Cognitive changes in patients undergoing treatment for non-central nervous system (CNS) cancers have been recognized for several decades, yet the underlying mechanisms are not well understood. Structural, functional and molecular neuroimaging has the potential to help clarify the neural bases of these cognitive abnormalities. Structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), MR spectroscopy (MRS), and positron emission tomography (PET) have all been employed in the study of cognitive effects of cancer treatment, with most studies focusing on breast cancer and changes thought to be induced by chemotherapy. Articles in this special issue of Brain Imaging and Behavior are devoted to neuroimaging studies of cognitive changes in patients with non-CNS cancer and include comprehensive critical reviews and novel research findings. The broad conclusions that can be drawn from past studies and the present body of new research is that there are structural and functional changes associated with cancer and various treatments, particularly systemic cytotoxic chemotherapy, although some cognitive and fMRI studies have identified changes at pre-treatment baseline. Recommendations to accelerate progress include well-powered multicenter neuroimaging studies, a better standardized definition of the cognitive phenotype and extension to other cancers. A systems biology framework incorporating multimodality neuroimaging, genetics and other biomarkers will be highly informative regarding individual differences in risk and protective factors and disease- and treatment-related mechanisms. Studies of interventions targeting cognitive changes are also needed. These next steps are expected to identify novel protective strategies and facilitate a more personalized medicine for cancer patients

    Bimodal release ondansetron for acute gastroenteritis among adolescents and adults: A randomized clinical trial

    Get PDF
    Importance: Vomiting resulting from acute gastroenteritis is commonly treated with intravenous antiemetics in acute care settings. If oral treatment were beneficial, patients might not need intravenous administered hydration or medication. Furthermore, a long-acting treatment could provide sustained relief from nausea and vomiting. Objective: To determine whether an experimental long-acting bimodal release ondansetron tablet decreases gastroenteritis-related vomiting and eliminates the need for intravenous therapy for 24 hours after administration. Design, Setting, and Participants: This placebo-controlled, double-blind, randomized clinical trial included patients from 19 emergency departments and 2 urgent care centers in the United States from December 8, 2014, to February 17, 2017. Patients 12 years and older with at least 2 vomiting episodes from presumed gastroenteritis in the previous 4 hours and symptoms with less than 36 hours\u27 duration were randomized using a 3:2 active to placebo ratio. Analyses were performed on an intent-to-treat basis and conducted from June 1, 2017, to November 1, 2017. Intervention: Bimodal release ondansetron tablet containing 6 mg of immediate release ondansetron and 18 mg of a 24-hour release matrix for a total of 24 mg of ondansetron. Main Outcomes and Measures: Treatment success was defined as no further vomiting, no need for rescue medication, and no intravenous hydration for 24 hours after bimodal release ondansetron administration. Results: Analysis included 321 patients (mean [SD] age, 29.0 [11.1] years; 195 [60.7%] women), with 192 patients in the bimodal release ondansetron group and 129 patients in the placebo group. Treatment successes were observed in 126 patients in the bimodal release ondansetron group (65.6%) compared with 70 patients in the placebo group (54.3%), with an 11.4% (95% CI, 0.3%-22.4%) absolute probability difference. The proportion of treatment success was 21% higher among patients who received bimodal release ondansetron compared with those who received a placebo (relative risk, 1.21; 95% CI, 1.00-1.46; P = .04). In an analysis including only patients with a discharge diagnosis of acute gastroenteritis and no major protocol violations, there were 123 treatment successes (69.5%) in the bimodal release ondansetron group compared with 67 treatment successes (54.9%) in the placebo group (relative risk, 1.27; 95% CI, 1.05-1.53; P = .01). Adverse effects were infrequent and similar to the known safety profile of ondansetron. Conclusions and Relevance: This randomized clinical trial found that a long-acting bimodal release oral ondansetron tablet was an effective antiemetic among adolescents and adults with moderate to severe vomiting from acute gastroenteritis. The drug benefits extended to 24 hours after administration. Bimodal release ondansetron may decrease the need for intravenous access and emergency department care to manage acute gastroenteritis. Trial Registration: ClinicalTrials.gov identifier: NCT02246439

    Eisenstein Series of Weight One, q-Averages of the 0-Logarithm and Periods of Elliptic Curves

    Get PDF
    For any elliptic curve E over k ⊂ R with E(C) = C^×/q^Z, q = e^(2πiz),Im(z) >, we study the q-average D_(0,q), defined on E(C), of the function D_0(z) = Im(z/(1−z)). Let Ω+(E) denote the real period of E. We show that there is a rational function R ∈ Q(X_1(N)) such that for any non-cuspidal real point s ∈ X_1(N) (which defines an elliptic curve E(s) over R together with a point P(s) of order N), πD_(0,q)(P(s)) equals Ω+(E(s))R(s). In particular, if s is Q-rational point of X_1(N), a rare occurrence according to Mazur, R(s) is a rational number

    Real-Time Detection and Rapid Multiwavelength Follow-up Observations of a Highly Subluminous Type II-P Supernova from the Palomar Transient Factory Survey

    Full text link
    The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 square degree field of view mounted on the 48-in Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the gamma-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts.Comment: ApJ, in press; all spectroscopic data available from the Weizmann Institute of Science Experimental Astrophysics Spectroscopy System (WISEASS; http://www.weizmann.ac.il/astrophysics/wiseass/

    CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells

    Get PDF
    Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell–derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke–induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.This work was supported by a CJ Martin Early Career Fellowship from the Australian National Health and Medical Research Council awarded to R.B.W.; NIH grant F30HL147426 awarded to K.M.A.; NIH grants U01TR001810, R01DK101501, and R01DK117940 awarded to A.A.W.; NIH grants R01HL135142, R01HL137927, and R01HL147148 awarded to M.H.C.; and NIH grants R01HL127200 and R01HL148667 awarded to X.Z

    A Natural Experiment on Innovation Without Patents

    Get PDF
    Innovation occurs within a complex web of law. Of the myriad legal doctrines that affect innovation, the most directly relevant is intellectual property, particularly patent law. The United States Constitution, in Article I, Section 8, states a strong public policy goal for the granting of patents (and copyrights) to inventors: “To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.” Despite the Founding Fathers’ apparent faith in the societal benefits afforded by patent protection, a crescendo of recent critics have accused the patent system of complicating, slowing, or even thwarting innovation. Patents certainly present significant hurdles for open and user innovation. Moreover, von Hippel (2005) and Strandburg (2008) have demonstrated that user innovators, especially individuals, tend to be poorly served, and often harmed, by the patent system

    PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51

    Get PDF
    On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed it to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data

    Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia

    Get PDF
    BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination
    corecore