11 research outputs found

    Confinement Effects on Phase Behavior of Soft Matter Systems

    Full text link
    When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by computer simulations of the Asakura-Oosawa model for colloid-polymer mixtures, but applications to other soft matter systems (e.g. confined polymer blends) will also be mentioned. Typically a wall will prefer one of the phases, and hence the composition of the system in the direction perpendicular to the walls will not be homogeneous. If both walls are of the same kind, this effect leads to a distortion of the phase diagram of the system in thin film geometry, in comparison with the bulk, analogous to the phenomenon of "capillary condensation" of simple fluids in thin capillaries. In the case of "competing walls", where both walls prefer different phases of the two phases coexisting in the bulk, a state with an interface parallel to the walls gets stabilized. The transition from the disordered phase to this "soft mode phase" is rounded by the finite thickness of the film and not a sharp phase transition. However, a sharp transition can occur where this interface gets localized at (one of) the walls. The relation of this interface localization transition to wetting phenomena is discussed. Finally, an outlook to related phenomena is given, such as the effects of confinement in cylindrical pores on the phase behavior, and more complicated ordering phenomena (lamellar mesophases of block copolymers or nematic phases of liquid crystals under confinement).Comment: 25 pages, 17 figures, to be published in Soft Matte

    Critical behaviour of microemulsions: Monte Carlo simulations of the Widom model

    Get PDF
    The critical behaviour of a lattice model for ternary mixtures of hydrophilic, hydrophobic and amphiphilic (surfactant) molecules is investigated by means of Monte Carlo simulations. A lattice model formulated by Widom as a simple approach of these mixtures is adopted taking advantage of its equivalence to a spin- 1/2 Ising model, which adds next nearest neighbors interactions on a simple cubic lattice. In this work we focus on the critical behaviour of the order-disorder phase transition of this model. A simulation strategy combining a standard Metropolis sampling and multiple histogram reweighting technique is used. The location of the phase boundary is well determined, being consistent with the 3D Ising critical temperature. In addition, a suitable finite size scaling analysis is performed to obtain critical amplitudes of magnitudes as magnetization, susceptibility and interfacial tension. The critical behaviour results compatible with the 3D Ising universality class, as expected. Likewise, critical amplitudes ratios give a reasonable agreement with the universal values obtained from different systems and methods.Fil: Bea, Edgar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Trobo, Marta L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentin

    From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry

    Full text link
    Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.Comment: 36 pages, 15 figure

    Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions

    No full text
    Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’)

    Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions

    No full text
    Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’)
    corecore