445 research outputs found

    Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics

    Get PDF
    The Debye-Stokes-Einstein (DSE) model of rotational diffusion predicts that the rotational correlation times τl\tau_{l} vary as [l(l+1)]1[l(l+1)]^{-1}, where ll is the rank of the orientational correlation function (given in terms of the Legendre polynomial of rank ll). One often finds significant deviation from this prediction, in either direction. In supercooled molecular liquids where the ratio τ1/τ2\tau_{1}/\tau_{2} falls considerably below three (the Debye limit), one usually invokes a jump diffusion model to explain the approach of the ratio τ1/τ2\tau_{1}/\tau_{2} to unity. Here we show in a computer simulation study of a standard model system for thermotropic liquid crystals that this ratio becomes much less than unity as the isotropic-nematic phase boundary is approached from the isotropic side. Simultaneously, the ratio τ2/η\tau_2/\eta (where η\eta is the shear viscosity of the liquid) becomes {\it much larger} than hydrodynamic value near the I-N transition. We have also analyzed the break down of the Debye model of rotational diffusion in ratios of higher order rotational correlation times. We show that the break down of the DSE model is due to the growth of orientational pair correlation and provide a mode coupling theory analysis to explain the results.Comment: Submitted to Physical Review

    Bonn Potential and Shell-Model Calculations for 206,205,204Pb

    Get PDF
    The structure of the nuclei 206,205,204Pb is studied interms of shell model employing a realistic effective interaction derived from the Bonn A nucleon-nucleon potential. The energy spectra, binding energies and electromagnetic properties are calculated and compared with experiment. A very good overall agreement is obtained. This evidences the reliability of our realistic effective interaction and encourages use of modern realistic potentials in shell-model calculations for heavy-mass nuclei.Comment: 4 pages, 4 figures, submitted to Physical Review

    Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy

    Get PDF
    Tourmaline crystals from the island of Elba commonly display a sharp transition to dark colors at the analogous termination due to the incorporation of Fe and/or Mn during the latest stages of crystallization in pegmatites. The formation of such color anomalies is related to a dramatic physicochemical change in the crystallization environment as a consequence of an opening of the geochemical system. However, mechanisms that may lead to the availability of Fe and/or Mn in the residual cavity fluids have been unclear. On the basis of chemical and spectroscopic investigations, combined with structural and paragenetic observations of the cavities, we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of Fe- and Mn-rich minerals that formed early in the pegmatitic rock surrounding the cavities occurred through leaching processes, produced by the action of the highly reactive late-stage cavity fluids. Such processes were responsible for the release of Fe and Mn in the geochemical system, allowing the formation of the late-stage dark-colored terminations in the tourmaline crystals. In some cavities, a high availability of Mn and/or Fe determined the evolution of the crystals from an initial elbaite/fluor-elbaite composition to celleriite, foitite or schorl. This compositional evolution trend can be described by the following general chemical substitution: XNa+ + Y(Li1.5 + Al0.5)3+ + WF− ↔ X□ + 2Y(Fe,Mn)2+ + WOH−.</p

    Application of the Kerman-Klein method to the solution of a spherical shell model for a deformed rare-earth nucleus

    Get PDF
    Core-particle coupling models are made viable by assuming that core properties such as matrix elements of multipole and pairing operators and excitation spectra are known independently. From the completeness relation, it is seen, however, that these quantities are themselves algebraic functions of the calculated core-particle amplitudes. For the deformed rare-earth nucleus 158Gd, we find that these sum rules are well-satisfied for the ground state band, implying that we have found a self-consistent solution of the non-linear Kerman-Klein equations.Comment: revtex and postscript, including 1 figure(postscript), submitted to Phys.Rev.Let

    Connected Network of Minima as a Model Glass: Long Time Dynamics

    Full text link
    A simple model to investigate the long time dynamics of glass-formers is presented and applied to study a Lennard-Jones system in supercooled and glassy phases. According to our model, the point representing the system in the configurational phase space performs harmonic vibrations around (and activated jumps between) minima pertaining to a connected network. Exploiting the model, in agreement with the experimental results, we find evidence for: i) stretched relaxational dynamics; ii) a strong T-dependence of the stretching parameter; iii) breakdown of the Stokes-Einstein law.Comment: 4 pages (Latex), 4 eps figure

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure
    corecore