56 research outputs found

    Integrated Analysis Reveals hsa-miR-142 as a Representative of a Lymphocyte-Specific Gene Expression and Methylation Signature

    Get PDF
    Gene expression profiling has provided insights into different cancer types and revealed tissue-specific expression signatures. Alterations in microRNA expression contribute to the pathogenesis of many types of human diseases. Few studies have integrated all levels of gene expression, miRNA and methylation to uncover correlations between these data types. We performed an integrated profiling to discover instances of miRNAs associated with a gene expression and DNA methylation signature across multiple cancer types. Using data from The Cancer Genome Atlas (TCGA), we revealed a concordant gene expression and methylation signature associated with the microRNA hsa-miR-142 across the same samples. In all cancer types examined, we found a signature of co-expression of a gene set R and methylated sites M, which correlate positively (M+) or negatively (M−) with the expression of hsa-miR-142. The set R consistently contains many genes, such as TRAF3IP3, NCKAP1L, CD53, LAPTM5, PTPRC, EVI2B, DOCK2, LCP2, CYBB and FYB. The signature is preserved across glioblastoma, ovarian, breast, colon, kidney, lung, uterine and rectum cancer. There is 28% overlap of methylation sites in M between glioblastoma (GBM) and ovarian cancer. There is 60% overlap of genes in R between GBM and ovarian (P = 1.3e−11). Most of the genes in R are known to be expressed in lymphocytes and haematopoietic stem cells, while M reflects membrane proteins involved in cell-cell adhesion functions. We speculate that the hsa-miR-142 associated signature may signal haematopoietic-specific processes and an accumulation of methylation events triggering a progressive loss of cell-cell adhesion. We also observed that GBM samples belonging to the proneural subtype tend to have underexpressed hsa-miR-142 and R genes, hypomethylated M+ and hypermethylated M−, while the mesenchymal samples have the opposite profile

    Clustering large software systems at multiple layers

    Get PDF
    Abstract Software clustering algorithms presented in the literature rarely incorporate in the clustering process dynamic information, such as the number of function invocations during runtime. Moreover, the structure of a software system is often multi-layered, while existing clustering algorithms often create flat system decompositions. This paper presents a software clustering algorithm called MULICsoft that incorporates in the clustering process both static and dynamic information. MULICsoft produces layered clusters with the core elements of each cluster assigned to the top layer. We present experimental results of applying MULICsoft to a large opensource system. Comparison with existing software clustering algorithms indicates that MULICsoft is able to produce decompositions that are close to those created by system experts

    Efficient unfolding pattern recognition in single molecule force spectroscopy data

    Get PDF
    BackgroundSingle-molecule force spectroscopy (SMFS) is a technique that measures the force necessary to unfold a protein. SMFS experiments generate Force-Distance (F-D) curves. A statistical analysis of a set of F-D curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and inter- and intra-molecular interactions can be derived.ResultsIn the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR). We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks.Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR\u27s unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases.ConclusionsOur algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Get PDF
    BackgroundA lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles.ResultsWe find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes.ConclusionGiven high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN

    Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits

    Get PDF
    Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild. Mycorrhizal symbioses have evolved repeatedly in diverse fungal lineages. A large phylogenomic analysis sheds light on genomic changes associated with transitions from saprotrophy to symbiosis, including divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.Peer reviewe

    Satisficing the conflicting software qualities of maintainability and performance at the source code level

    No full text
    Abstract. The major contributions of our work include adopting the NFR framework to represent and analyze two software qualities that often conflict with each other: maintainability and performance. We identified and described many heuristics that can be implemented in a system's source code to achieve either quality. We implemented some of the heuristics in two medium-sized software systems and then collected measurements to determine the effect of the heuristics on maintainability and performance. A general methodology is described for evaluating and selecting the heuristics that will improve a system’s software quality the most. The results of our research were also encoded in XML files, and made available on the World Wide Web for use by software developers. The WWW address is

    Translation and Rotation Invariant Mining of Frequent Trajectories: Application to Protein Unfolding Pathways

    No full text
    Abstract. We present a framework for mining frequent trajectories, which are translated and/or rotated with respect to one another. We then discuss a multiresolution methodology, based on the wavelet transformation, for speeding up the discovery of frequent trajectories. We present experimental results using noisy protein unfolding trajectories and synthetic datasets. Our results demonstrate the effectiveness of the proposed approaches for finding frequent trajectories. A multiresolution mining strategy provides significant mining speed improvements.
    • 

    corecore