32 research outputs found

    Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients

    Get PDF
    Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 +/- 9.5 kg/m(2). Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 +/- 21.7 vs. 47.0 +/- 20.8, p = 0.002; GAD-7: 9.7 +/- 5.8 vs. 7.1 +/- 5.3, p = 0.004; PHQ-9: 11.6 +/- 6.6 vs. 8.8 +/- 5.9, p = 0.008; EDI-2: 50.5 +/- 12.8 vs. 39.7 +/- 11.9, p 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation

    Circulating Spexin Is Associated with Body Mass Index and Fat Mass but Not with Physical Activity and Psychological Parameters in Women across a Broad Body Weight Spectrum

    Get PDF
    Spexin (SPX) is a novel, widely expressed peptide, with anorexigenic effects demonstrated in animal models and negatively correlated with body mass index (BMI) in humans. It increases locomotor activity in rodents and is elevated in human plasma following exercise. Studies have also shown an effect of stress and anxiety on SPX's expression in different brain structures in animals. The relationships between plasma SPX and physical activity, body composition, and patient-reported outcomes such as perceived stress, depressiveness, anxiety, and eating behaviors are unknown and were examined in this study over a wide BMI range. A total of 219 female (n = 68 with anorexia nervosa; n = 79 with obesity; n = 72 with normal weight) inpatients were enrolled. Perceived stress (PSQ 20), anxiety (GAD 7), depressiveness (PHQ 9), and eating disorder pathology (EDI 2), as well as BMI, bioimpedance analysis, and accelerometry, were measured cross-sectionally at the beginning of treatment and correlated with plasma SPX levels (measured by ELISA) obtained at the same time. Plasma SPX levels were negatively associated with BMI (r = -0.149, p = 0.027) and body fat mass (r = -0.149, p = 0.04), but did not correlate with perceived stress, anxiety, depressiveness, eating behavior, energy expenditure, and physical activity (p > 0.05). The results replicate the negative correlation of SPX with BMI and fat mass, but do not support the hypothesis that peripheral SPX plays a role in the regulation of stress, depressiveness, anxiety, eating behavior, or physical activity

    Efficient Transfection of Large Plasmids Encoding HIV-1 into Human Cells—A High Potential Transfection System Based on a Peptide Mimicking Cationic Lipid

    Get PDF
    One major disadvantage of nucleic acid delivery systems is the low transfection or transduction efficiency of large-sized plasmids into cells. In this communication, we demonstrate the efficient transfection of a 15.5 kb green fluorescent protein (GFP)-fused HIV-1 molecular clone with a nucleic acid delivery system prepared from the highly potent peptide-mimicking cationic lipid OH4 in a mixture with the phospholipid DOPE (co-lipid). For the transfection, liposomes were loaded using a large-sized plasmid (15.5 kb), which encodes a replication-competent HIV type 1 molecular clone that carries a Gag-internal green fluorescent protein (HIV-1 JR-FL Gag-iGFP). The particle size and charge of the generated nanocarriers with 15.5 kb were compared to those of a standardized 4.7 kb plasmid formulation. Stable, small-sized lipoplexes could be generated independently of the length of the used DNA. The transfer of fluorescently labeled pDNA-HIV1-Gag-iGFP in HEK293T cells was monitored using confocal laser scanning microscopy (cLSM). After efficient plasmid delivery, virus particles were detectable as budding structures on the plasma membrane. Moreover, we observed a randomized distribution of fluorescently labeled lipids over the plasma membrane. Obviously, a significant exchange of lipids between the drug delivery system and the cellular membranes occurs, which hints toward a fusion process. The mechanism of membrane fusion for the internalization of lipid-based drug delivery systems into cells is still a frequently discussed topic

    Identification of Naturally Processed Hepatitis C Virus-Derived Major Histocompatibility Complex Class I Ligands

    Get PDF
    Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS31406–1415 and NS5B2594–2602). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future

    Lipoplex-functionalized thin-film surface coating based on extracellular matrix components as local gene delivery system to control osteogenic stem cell differentiation

    Get PDF
    A gene-activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin-film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer-by-layer assembly. For further functionalization, DNA/lipid-nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin-film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence-labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene-functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues.publishe

    Fatty acid desaturase 2 determines the lipidomic landscape and steroidogenic function of the adrenal gland

    Get PDF
    Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2/^{-/-} mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease

    Cytotoxic T Lymphocytes Derived from Patients with Chronic Hepatitis C Virus Infection Kill Bystander Cells via Fas-FasL Interaction

    No full text
    The role of Fas-mediated lysis of hepatocytes in hepatitis C virus (HCV)-induced injury is frequently discussed. We therefore analyzed the effect of the number of HCV antigen-expressing cells, the mode of antigen presentation, and the number of cytotoxic T lymphocytes in a coculture system mimicking cellular components of the liver. Here, we show that endogenously processed HCV proteins are capable of inducing bystander killing. We further demonstrate that 0.8 to 1.5% of cells presenting HCV antigens suffice to induce lysis of 10 to 29% of bystander cells, suggesting that the mechanism may be operative at low fractions of infected versus uninfected hepatocytes in vivo. Our data underscore the role of the Fas pathway in HCV-related liver injury and support the exploration of Fas-based treatment strategies for patients with chronic hepatitis C virus infection
    corecore