175 research outputs found
Endotype-Phenotype Patterns in Meniere's Disease Based on Gadolinium-Enhanced MRI of the Vestibular Aqueduct
Two histopathological subtypes of Meniere's disease (MD) were recently described in a human post-mortem pathology study. The first subtype demonstrated a degenerating distal endolymphatic sac (ES) in the affected inner ear (subtype MD-dg); the second subtype (MD-hp) demonstrated an ES that was developmentally hypoplastic. The two subtypes were associated with different clinical disease features (phenotypes), suggesting that distinct endotype-phenotype patterns exist among MD patients. Therefore, clinical endotyping based on ES pathology may reveal clinically meaningful MD patient subgroups. Here, we retrospectively determined the ES pathologies of clinical MD patients (n = 72) who underwent intravenous delayed gadolinium-enhanced inner ear magnetic resonance imaging using previously established indirect radiographic markers for both ES pathologies. Phenotypic subgroup differences were evidenced; for example, the MD-dg group presented a higher average of vertigo attacks (ratio of vertigo patterns daily/weekly/other vs. monthly, MD-dg: 6.87: 1; MD-hp: 1.43: 1; p = 0.048) and more severely reduced vestibular function upon caloric testing (average caloric asymmetry ratio, MD-dg: 30.2% ± 30.4%; MD-hp: 13.5% ± 15.2%; p = 0.009), while the MD-hp group presented a predominantly male sex ratio (MD-hp: 0.06:1 [f/m]; MD-dg: 1.2:1 [f/m]; p = 0.0004), higher frequencies of bilateral clinical affection (MD-hp: 29.4%; MD-dg: 5.5%; p = 0.015), a positive family history for hearing loss/vertigo/MD (MD-hp: 41.2%; MD-dg: 15.7%; p = 0.028), and radiographic signs of concomitant temporal bone abnormalities, i.e., semicircular canal dehiscence (MD-hp: 29.4%; MD-dg: 3.6%; p = 0.007). In conclusion, this new endotyping approach may potentially improve the diagnosis, prognosis and clinical decision-making for individual MD patients
Radiological feature heterogeneity supports etiological diversity among patient groups in Meniere's disease
We aimed to determine the prevalence of radiological temporal bone features that in previous studies showed only a weak or an inconsistent association with the clinical diagnosis of Meniere's disease (MD), in two groups of MD patients (n = 71) with previously established distinct endolymphatic sac pathologies; i.e. the group MD-dg (ES degeneration) and the group MD-hp (ES hypoplasia). Delayed gadolinium-enhanced MRI and high-resolution CT data were used to determine and compare between and within (affected vs. non-affected side) groups geometric temporal bone features (lengths, widths, contours), air cell tract volume, height of the jugular bulb, sigmoid sinus width, and MRI signal intensity alterations of the ES. Temporal bone features with significant intergroup differences were the retrolabyrinthine bone thickness (1.04 ± 0.69 mm, MD-hp; 3.1 ± 1.9 mm, MD-dg; p < 0.0001); posterior contour tortuosity (mean arch-to-chord ratio 1.019 ± 0.013, MD-hp; 1.096 ± 0.038, MD-dg; p < 0.0001); and the pneumatized volume (1.37 [0.86] cm3, MD-hp; 5.25 [3.45] cm3, MD-dg; p = 0.03). Features with differences between the affected and non-affected sides within the MD-dg group were the sigmoid sinus width (6.5 ± 1.7 mm, affected; 7.6 ± 2.1 mm, non-affected; p = 0.04) and the MRI signal intensity of the endolymphatic sac (median signal intensity, affected vs. unaffected side, 0.59 [IQR 0.31-0.89]). Radiological temporal bone features known to be only weakly or inconsistently associated with the clinical diagnosis MD, are highly prevalent in either of two MD patient groups. These results support the existence of diverse-developmental and degenerative-disease etiologies manifesting with distinct radiological temporal bone abnormalities
A Preoperative Clinical Risk Score Including C-Reactive Protein Predicts Histological Tumor Characteristics and Patient Survival after Surgery for Sporadic Non-Functional Pancreatic Neuroendocrine Neoplasms:An International Multicenter Cohort Study
Background: Oncological survival after resection of pancreatic neuroendocrine neoplasms (panNEN) is highly variable depending on various factors. Risk stratification with preoperatively available parameters could guide decision-making in multidisciplinary treatment concepts. C-reactive Protein (CRP) is linked to inferior survival in several malignancies. This study assesses CRP within a novel risk score predicting histology and outcome after surgery for sporadic non-functional panNENs. Methods: A retrospective multicenter study with national exploration and international validation. CRP and other factors associated with overall survival (OS) were evaluated by multivariable cox-regression to create a clinical risk score (CRS). Predictive values regarding OS, disease-specific survival (DSS), and recurrence-free survival (RFS) were assessed by time-dependent receiver-operating characteristics. Results: Overall, 364 patients were included. Median CRP was significantly higher in patients >60 years, G3, and large tumors. In multivariable analysis, CRP was the strongest preoperative factor for OS in both cohorts. In the combined cohort, CRP (cut-off >= 0.2 mg/dL; hazard-ratio (HR):3.87), metastases (HR:2.80), and primary tumor size >= 3.0 cm (HR:1.83) showed a significant association with OS. A CRS incorporating these variables was associated with postoperative histological grading, T category, nodal positivity, and 90-day morbidity/mortality. Time-dependent area-under-the-curve at 60 months for OS, DSS, and RFS was 69%, 77%, and 67%, respectively (all p <0.001), and the inclusion of grading further improved the predictive potential (75%, 84%, and 78%, respectively). Conclusions: CRP is a significant marker of unfavorable oncological characteristics in panNENs. The proposed internationally validated CRS predicts histological features and patient survival
Preserved Morphology and Physiology of Excitatory Synapses in Profilin1-Deficient Mice
Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity
Streptozotocin-induced beta-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain
Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise;it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced beta-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus
A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
Mutation in the mouse histone gene Hist2h3c1 leads to degeneration of the lens vesicle and severe microphthalmia
During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A- > C mutation (I1e120Leu) in the Hist2h3c1 gene and a 71 T- > C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting -from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription - factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development
Identification of genetic elements in metabolism by high-throughput mouse phenotyping.
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome
- …