216 research outputs found

    Observing a Quantum Phase Transition by Measuring a Single Spin

    Full text link
    We show that the ground-state quantum correlations of an Ising model can be detected by monitoring the time evolution of a single spin alone, and that the critical point of a quantum phase transition is detected through a maximum of a suitably defined observable. A proposed implementation with trapped ions realizes an experimental probe of quantum phase transitions which is based on quantum correlations and scalable for large system sizes.Comment: 5 pages, 2 figure

    Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany

    Get PDF
    We report on luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5-21.7 magSQM/_{SQM}/arcsec2^2 were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 magSQM/_{SQM}/arcsec2^2 were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicate that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.Comment: 20 pages, 8 figures, Journal of Quantitative Spectroscopy and Radiative Transfer 201

    Nonlinear Spectroscopy of Trapped Ions

    Full text link
    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity which require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in [M. Gessner et al. New J. Phys. 16 092001 (2014)], we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems and discuss experimental implementations with trapped ion technology in detail. These methods in combination with distinct features of ultra-cold matter systems allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and can therefore reliably probe systems where, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.Comment: 14 pages, 10 figure

    A surface water body dataset with daily temporal resolution: Selected examples and application potential of the Global WaterPack

    Get PDF
    Information on the distribution of inland waters bodies and their seasonal variability is important for supporting water and land management and informed decision making. Furthermore, such data can be crucial basis for scientific analyses in the field of regional and global environmental research. Key functions and services of wetlands for example are closely related to the temporal variations of surface water availability and inundation cycles. Over the past years the mapping of temporal water dynamics from earth observation data has received increasing attention. Open data policies as well as the progress in computing power and processing techniques have played a major role for this development. In the past decades there has been several optical instruments available collecting data on global scale with very high temporal resolution, such as MODIS or SPOT-VGT/Proba-V. With the launch of Sentinel-3 and Suomi-NPP such observations at global scale and high temporal resolution has been secured for the near future. Recently, many studies already underlined the relevance of mapping water with high temporal resolution presenting essential results and interesting findings. In our research we are presenting DLRs Global WaterPack, a MODIS-based 250m time series dataset of surface water dynamics with daily temporal resolution. Using examples of lakes and reservoirs from around the Earth, the potential of the Global WaterPack to capture relevant parameters such as inundation frequency and duration, timing of flooding and water retreat, as well as freezing and thawing cycles, is presented. Results are compared with high resolution spatial reference data and in-situ measurements. The application potential of the Global WaterPack time series for monitoring and assessing changes is discussed. Furthermore, we discuss this potential based on selected examples which underline the added value of water surface detection at high temporal resolution in the context of climate and environmental change. Short and long-term dynamics of lakes and reservoirs and the underlying climatic or anthropogenic processes often cannot be determined in detail in regards to time by assessing interrupted time series or multi-temporal watermask snapshot observations. The entire MODIS time series from 06/2002-today is currently being processed and the dataset will be tested as input for global hydrological models. Additionally, quantification of uncertainty is being planned and will be part of future development

    Reliability of species detection in 16S microbiome analysis: Comparison of five widely used pipelines and recommendations for a more standardized approach

    Get PDF
    The use of NGS-based testing of the bacterial microbiota is often impeded by inconsistent or non-reproducible results, especially when applying different analysis pipelines and reference databases. We investigated five frequently used software packages by submitting the same monobacterial datasets to them, representing the V1-2 and the V3-4 regions of the 16S-rRNA gene of 26 well characterized strains, which were sequenced by the Ion Torrent™ GeneStudio S5 system. The results obtained were divergent and calculations of relative abundance did not yield the expected 100%. We investigated these inconsistencies and were able to attribute them to failures either of the pipelines themselves or of the reference databases they rely on. On the basis of these findings, we recommend certain standards which should help to render microbiome testing more consistent and reproducible, and thus useful in clinical practice

    Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient

    Get PDF
    Information about the global distribution of aquatic hyphomycetes is scarce, despite the primary importance of these fungi in stream ecosystem functioning. In particular, the relationship between their diversity and latitude remains unclear, due to a lack of coor- dinated surveys across broad latitudinal ranges. This study is a first report on latitudinal patterns of aquatic hyphomycete diversity associated with native leaf-litter species in five streams located along a gradient extending from the subarctic to the tropics. Exposure of leaf litter in mesh bags of three different mesh sizes facilitated assessing the effects of including or excluding different size-classes of litter-consuming invertebrates. Aquatic hyphomycete evenness was notably constant across all sites, whereas species richness and diversity, expressed as the Hill number, reached a maximum at mid-latitudes (Medi- terranean and temperate streams). These latitudinal patterns were consistent across litter species, despite a notable influence of litter identity on fungal communities at the local scale. As a result, the bell-shaped distribution of species richness and Hill diversity devi- ated markedly from the latitudinal patterns of most other groups of organisms. Differences in the body-size distribution of invertebrate communities colonizing the leaves had no effect on aquatic hyphomycete species richness, Hill diversity or evenness, but inverte- brates could still influence fungal communities by depleting litter, an effect that was not captured by the design of our experiment
    • …
    corecore