10 research outputs found

    The estrogen receptor-alpha agonist 16alpha-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats.

    No full text
    OBJECTIVE: Cardiac mass increases with age and with declining estradiol serum levels in postmenopausal women. Although the non-selective estrogen receptor-alpha and -beta agonist 17beta-estradiol attenuates cardiac hypertrophy in animal models and in observational studies, it remains unknown whether activation of a specific estrogen receptor subtype (ERalpha or ERbeta) might give similar or divergent results. Therefore, we analyzed myocardial hypertrophy as well as cardiac function and gene expression in ovariectomized, spontaneously hypertensive rats (SHR) treated with the subtype-selective ERalpha agonist 16alpha-LE2 or 17beta-estradiol. METHODS AND RESULTS: Long-term administration of 16alpha-LE2 or 17beta-estradiol did not affect elevated blood pressure, but both agonists efficiently attenuated cardiac hypertrophy and increased cardiac output, left ventricular stroke volume, papillary muscle strip contractility, and cardiac alpha-myosin heavy chain expression. The observed effects of E2 and 16alpha-LE2 were abrogated by the ER antagonist ZM-182780. Improved left ventricular function upon 16alpha-LE2 treatment was also observed in cardiac MRI studies. In contrast to estradiol and 16alpha-LE2, tamoxifen inhibited cardiac hypertrophy but failed to increase alpha-myosin heavy chain expression and cardiac output. CONCLUSIONS: These results support the hypothesis that activation of ERalpha favorably affects cardiac hypertrophy, myocardial contractility, and gene expression in ovariectomized SHR. Further studies are required to determine whether activation ERbeta mediates redundant or divergent effects

    Effect of additional temporary glycoprotein IIb/IIIa receptor inhibition on troponin release in elective percutaneous coronary interventions after pretreatment with aspirin and clopidogrel (TOPSTAR trial).

    Get PDF
    OBJECTIVES: The Troponin in Planned PTCA/Stent Implantation With or Without Administration of the Glycoprotein IIb/IIIa Receptor Antagonist Tirofiban (TOPSTAR) trial investigated: 1) the amount of troponin T (TnT) release after nonacute, elective percutaneous coronary intervention (PCI) in patients pretreated with aspirin and clopidogrel; and 2) the effect of additional glycoprotein (GP) IIb/IIIa receptor inhibiton on postinterventional TnT release. BACKGROUND: No data are available yet as to whether additional administration of a GP IIb/IIIa receptor antagonist might be beneficial in patients undergoing elective PCI already pretreated with aspirin and clopidogrel. METHODS: After bolus application of the study medication (tirofiban [T] or placebo [P]), PCI was performed followed by an 18-h continuous infusion of T/P. Primary end point of the study was incidence and amount of TnT release after elective PCI after 24 h. RESULTS: A total of 12 h after PCI troponin release was detected in 63% of the patients receiving P and in 40% of the patients receiving T (p < 0.05), after 24 h in 69% (P) and 48% (T) (p < 0.05) and after 48 h in 74% (P) versus 58% (T) (p < 0.08) of the patients. No differences were observed regarding major bleeding, intracranial bleeding or nonhemorrhagic strokes. After nine months a reduction of combined death/myocardial infarction/target vessel revascularization could be observed in the tirofiban group ([T] 2.3% vs. [P] 13.04%, p < 0.05). CONCLUSIONS: Troponin T release occurs after successful intervention in 74% of the patients undergoing elective PCI after 48 h even after pretreatment with aspirin and clopidogrel. The GP IIb/IIIa receptor antagonist tirofiban is able to decrease the incidence of troponin release significantly in this patient population

    Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.

    No full text
    The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect

    Distribution and function of sodium channel subtypes in human atrial myocardium

    No full text
    <p>Voltage-gated sodium channels composed of a pore-forming alpha subunit and auxiliary beta subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used immunohistochemical methods to define the level of expression and the subcellular localization of sodium channel alpha and beta subunits in human atrial myocytes. Na(v)1.2 channels are located in highest density at intercalated disks where beta 1 and beta 3 subunits are also expressed. Na(v)1.4 and the predominant Na(v)1.5 channels are located in a striated pattern on the cell surface at the z-lines together with beta 2 subunits. Na(v)1.1, Na(v)1.3, and Na(v)1.6 channels are located in scattered puncta on the cell surface in a pattern similar to beta 3 and beta 4 subunits. Na(v)1.5 comprised approximately 88% of the total sodium channel staining, as assessed by quantitative immunohistochemistry. Functional studies using whole cell patch-clamp recording and measurements of contractility in human atrial cells and tissue showed that TTX-sensitive (non-Na(v)1.5) alpha subunit isoforms account for up to 27% of total sodium current in human atrium and are required for maximal contractility. Overall, our results show that multiple sodium channel alpha and beta subunits are differentially localized in subcellular compartments in human atrial myocytes, suggesting that they play distinct roles in initiation and conduction of the action potential and in excitation-contraction coupling. TTX-sensitive sodium channel isoforms, even though expressed at low levels relative to TTX-sensitive Na(v)1.5, contribute substantially to total cardiac sodium current and are required for normal contractility. This article is part of a Special Issue entitled "Na+ Regulation in Cardiac Myocytes". (C) 2013 Elsevier Ltd. All rights reserved.</p>

    Quellen- und Literaturverzeichnis

    No full text
    corecore