278 research outputs found

    Proton Capture on ^{17}O and its astrophysical implications

    Full text link
    The reaction 17^{17}O(p,γ)18(p,\gamma)^{18}F influences hydrogen-burning nucleosynthesis in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars and classical novae. In the relevant temperature range for these environments (T9=0.01−0.4),themaincontributionstotherateofthisreactionarethedirectcaptureprocess,twolowlyingnarrowresonances(T_{9}=0.01-0.4), the main contributions to the rate of this reaction are the direct capture process, two low lying narrow resonances (E_{r}=65.1and183keV)andthelow−energytailsoftwobroadresonances( and 183 keV) and the low-energy tails of two broad resonances (E_{r}=557and677keV).Previousmeasurementsandcalculationsgivecontradictoryresultsforthedirectcapturecontributionwhichinturnincreasestheuncertaintyofthereactionrate.Inaddition,veryfewpublishedcrosssectiondataexistforthehighenergyregionthatmightaffecttheinterpretationofthedirectcaptureandthecontributionsofthebroadresonancesinthelowerenergyrange.Thisworkaimstoaddresstheseissues.Thereactioncrosssectionwasmeasuredinawideprotonenergyrange( and 677 keV). Previous measurements and calculations give contradictory results for the direct capture contribution which in turn increases the uncertainty of the reaction rate. In addition, very few published cross section data exist for the high energy region that might affect the interpretation of the direct capture and the contributions of the broad resonances in the lower energy range. This work aims to address these issues. The reaction cross section was measured in a wide proton energy range (E_{c.m.}=345−1700keV)andatseveralangles( - 1700 keV) and at several angles (\theta_{lab}=0^{\circ},45^{\circ},90^{\circ},135^{\circ}).Theobservedprimary). The observed primary \gamma−transitionswereusedasinputinan-transitions were used as input in an R−matrixcodeinordertoobtainthecontributionofthedirectcaptureandthetwobroadresonancestothelow−energyregion.TheextrapolatedS−factorfromthepresentdataisingoodagreementwiththeexistingliteraturedatainthelow−energyregion.AnewreactionratewascalculatedfromthecombinedresultsofthisworkandliteratureS−factordeterminations.Resonancestrengthsandbranchingsarereportedforseveral-matrix code in order to obtain the contribution of the direct capture and the two broad resonances to the low-energy region. The extrapolated S-factor from the present data is in good agreement with the existing literature data in the low-energy region. A new reaction rate was calculated from the combined results of this work and literature S-factor determinations. Resonance strengths and branchings are reported for several ^{18}Fstates.WewereabletoextrapolatetheastrophysicalS−factorofthereactionF states. We were able to extrapolate the astrophysical S-factor of the reaction ^{17}OO(p,\gamma)^{18}$F at low energies from cross section data taken at higher energies. No significant changes in the nucleosynthesis are expected from the newly calculated reaction rate.Comment: Accepted in Physical Review

    Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation

    Full text link
    We report results of direct measurements of velocity profiles in a microchannel with hydrophobic and hydrophilic walls, using a new high precision method of double-focus spacial fluorescence cross-correlation under a confocal microscope. In the vicinity of both walls the measured velocity profiles do not turn to zero by giving a plateau of constant velocity. This apparent slip is proven to be due to a Taylor dispersion, an augmented by shear diffusion of nanotracers in the direction of flow. Comparing the velocity profiles near the hydrophobic and hydrophilic walls for various conditions shows that there is a true slip length due to hydrophobicity. This length, of the order of several tens of nanometers, is independent on electrolyte concentration and shear rate

    Masses of excited baryons from chirally improved quenched lattice QCD

    Get PDF
    Whereas ground state spectroscopy for quenched QCD is well understood, it is still a challenge to obtain results for excited hadron states. In our study we present results from a new approach for determining spatially optimized operators for lattice spectroscopy of excited hadrons. In order to be able to approach physical quark masses we work with the chirally improved Dirac operator, i.e., approximate Ginsparg-Wilson fermions. Since these are computationally expensive we restrict ourselves to a few quark sources. We use Jacobi smeared quark sources with different widths and combine them to construct hadron operators with different spatial wave functions. This allows us to identify the Roper state and other excited baryons, also in the strange sector.Comment: Contribution to BARYONS 2004, Palaiseau, France, October 25 - 29, 2004; 4 pages, 1 figure, Style espcrc

    Excited hadrons from improved interpolating fields

    Full text link
    The calculation of quark propagators for Ginsparg-Wilson-type Dirac operators is costly and thus limited to a few different sources. We present a new approach for determining spatially optimized operators for lattice spectroscopy of excited hadrons. Jacobi smeared quark sources with different widths are combined to construct hadron operators with different spatial wave functions. We study the Roper state and excited rho and pion mesons.Comment: Lattice2004(spectrum), 3 pages, 1 figure, (LaTeX style file espcrc2.sty and AMS style files

    A microscopic semiclassical confining field equation for U(1)U(1) lattice gauge theory in 2+1 dimensions

    Get PDF
    We present a semiclassical nonlinear field equation for the confining field in 2+1--dimensional U(1)U(1) lattice gauge theory (compact QED). The equation is derived directly from the underlying microscopic quantum Hamiltonian by means of truncation. Its nonlinearities express the dynamic creation of magnetic monopole currents leading to the confinement of the electric field between two static electric charges. We solve the equation numerically and show that it can be interpreted as a London relation in a dual superconductor.Comment: 21 pages, epsf postscript figures included, full postscript available at ftp://ftp.th.physik.uni-frankfurt.de/pub/cbest/micro.ps.Z or http://www.th.physik.uni-frankfurt.de/~cbest/pub.htm

    Quenched QCD with fixed-point and chirally improved fermion

    Get PDF
    In this contribution we present results from quenched QCD simulations with the parameterized fixed-point (FP) and the chirally improved (CI) Dirac operator. Both these operators are approximate solutions of the Ginsparg-Wilson equation and have good chiral properties. We focus our discussion on observables sensitive to chirality. In particular we explore pion masses down to 210 MeV in light hadron spectroscopy, quenched chiral logs, the pion decay constant and the pion scattering length. We discuss finite volume effects, scaling properties of the FP and CI operators and performance issues in their numerical implementation.Comment: Lattice2002(chiral), 17 pages, 21 figures, (LaTeX style file espcrc2.sty and AMS style files

    Direct Evidence for Termination of Obscured Star Formation by Radiatively Driven Outflows in Reddened QSOs

    Get PDF
    We present optical to far-infrared photometry of 31 reddened QSOs that show evidence for radiatively driven outflows originating from AGN in their rest-frame UV spectra. We use these data to study the relationships between the AGN-driven outflows, and the AGN and starburst infrared luminosities. We find that FeLoBAL QSOs are invariably IR-luminous, with IR luminosities exceeding 10^{12} Solar luminosities in all cases. The AGN supplies 76% of the total IR emission, on average, but with a range from 20% to 100%. We find no evidence that the absolute luminosity of obscured star formation is affected by the AGN-driven outflows. Conversely, we find an anticorrelation between the strength of AGN-driven outflows, as measured from the range of outflow velocities over which absorption exceeds a minimal threshold, and the contribution from star formation to the total IR luminosity, with a much higher chance of seeing a starburst contribution in excess of 25% in systems with weak outflows than in systems with strong outflows. Moreover, we find no convincing evidence that this effect is driven by the IR luminosity of the AGN. We conclude that radiatively driven outflows from AGN can have a dramatic, negative impact on luminous star formation in their host galaxies. We find that such outflows act to curtail star formation such that star formation contributes less than ~25% of the total IR luminosity. We also propose that the degree to which termination of star formation takes place is not deducible from the IR luminosity of the AGN.Comment: Accepted for publication in Ap

    Quenched spectroscopy with fixed-point and chirally improved fermions

    Get PDF
    We present results from quenched spectroscopy calculations with the parametrized fixed-point and the chirally improved Dirac operators. Both these operators are approximate solutions of the Ginsparg-Wilson equation and have good chiral properties. This allows us to work at small quark masses and we explore pseudoscalar-mass to vector-mass ratios down to 0.28. We discuss meson and baryon masses, their scaling properties, finite volume effects and compare our results with recent large scale simulations. We find that the size of quenching artifacts of the masses is strongly correlated with their experimentally observed widths and that the gauge and hadronic scales are consistent.Comment: 66 pages, 33 figures. Published version: minor modifications in the text, references adde
    • 

    corecore