25 research outputs found

    Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic

    Get PDF
    A key driving factor behind rapid Arctic climate change is black carbon, the atmospheric aerosol that most efficiently absorbs sunlight. Our knowledge about black carbon in the Arctic is scarce, mainly limited to long-term measurements of a few ground stations and snap-shots by aircraft observations. Here, we combine observations from aircraft campaigns performed over nine years, and present vertically resolved average black carbon properties. A factor of four higher black carbon mass concentration (21.6 ng m3^{–3} average, 14.3 ng m3^{–3} median) was found in spring, compared to summer (4.7 ng m3^{–3} average, 3.9 ng m3^{–3} median). In spring, much higher inter-annual and geographic variability prevailed compared to the stable situation in summer. The shape of the black carbon size distributions remained constant between seasons with an average mass mean diameter of 202 nm in spring and 210 nm in summer. Comparison between observations and concentrations simulated by a global model shows notable discrepancies, highlighting the need for further model developments and intensified measurements

    Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter

    Get PDF
    Properties of atmospheric black carbon (BC) particles were characterized during a field experiment at a rural background site (Melpitz, Germany) in February 2017. BC absorption at a wavelength of 870 nm was measured by a photoacoustic extinctiometer, and BC physical properties (BC mass concentration, core size distribution and coating thickness) were measured by a single-particle soot photometer (SP2). Additionally, a catalytic stripper was used to intermittently remove BC coatings by alternating between ambient and thermo-denuded conditions. From these data the mass absorption cross section of BC (MACBC) and its enhancement factor (EMAC) were inferred for essentially waterfree aerosol as present after drying to low relative humidity (RH). Two methods were applied independently to investigate the coating effect on EMAC: A correlation method (MACBC; ambient vs. BC coating thickness) and a denuding method (MACBC; ambient vs. MACBC; denuded). Observed EMAC values varied from 1.0 to 1.6 (lower limit from denuding method) or 1:2 to 1.9 (higher limit from correlation method), with the mean coating volume fraction ranging from 54% to 78% in the dominating mass equivalent BC core diameter range of 200?220 nm.MACBC and EMAC were strongly correlated with coating thickness of BC. By contrast, other potential drivers of EMAC variability, such as different BC sources (air mass origin and absorption Angström exponent), coating composition (ratio of inorganics to organics) and BC core size distribution, had only minor effects. These results for ambient BC measured at Melpitz during winter show that the lensing effect caused by coatings on BC is the main driver of the variations in MACBC and EMAC, while changes in other BC particle properties such as source, BC core size or coating composition play only minor roles at this rural background site with a large fraction of aged particles. Indirect evidence suggests that potential dampening of the lensing effect due to unfavorable morphology was most likely small or even negligible

    Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic

    Get PDF
    A key driving factor behind rapid Arctic climate change is black carbon, the atmospheric aerosol that most efficiently absorbs sunlight. Our knowledge about black carbon in the Arctic is scarce, mainly limited to long-term measurements of a few ground stations and snap-shots by aircraft observations. Here, we combine observations from aircraft campaigns performed over nine years, and present vertically resolved average black carbon properties. A factor of four higher black carbon mass concentration (21.6 ng m−3 average, 14.3 ng m−3 median) was found in spring, compared to summer (4.7 ng m−3 average, 3.9 ng m−3 median). In spring, much higher inter-annual and geographic variability prevailed compared to the stable situation in summer. The shape of the black carbon size distributions remained constant between seasons with an average mass mean diameter of 202 nm in spring and 210 nm in summer. Comparison between observations and concentrations simulated by a global model shows notable discrepancies, highlighting the need for further model developments and intensified measurements

    In-situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late spring and summer

    Get PDF
    In-situ aerosol data collected in the Arctic troposphere during a three-week period in 2004 were analysed. The measurements took place during late spring, i.e., at the time of the year when the characteristics of the aerosol distribution change from being accumulation-mode dominated to being primarily of the Aitken-mode type, a process that previously has been observed in the boundary layer. To address the question whether this transition is also detectable in the free troposphere of an aircraft-measured data from the ASTAR 2004 campaign were analysed. In this study, we present vertically as well as temporally results from both ground-based and airborne measurements of the total number concentrations of particles larger than 10 and 260 nm. Aircraft-measured size distributions of the aerosol ranging from 20 to 2200 nm have been evaluated with regard to conditions in the boundary layer as well as in the free troposphere. Furthermore an analysis of the volatile fraction of the aerosol population has been performed both for the integrated and size-distributed results. From these investigations we find that the transition takes place in the entire troposphere

    Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect

    Get PDF
    The influence of shipping on air quality over the Southern Baltic Sea was investigated by characterizing the horizontal and vertical distribution of aerosols and trace gases using airborne measurements in the summer of 2015. Generally, continental and anthropogenic emissions affected the vertical distribution of atmospheric pollutants, leading to pronounced stratification in and above the marine boundary layer and controlling the aerosol extinction. Marine traffic along the shipping corridor “Kadet Fairway” in the Arkona Basin is shown to influence the presence and properties of both trace gases and aerosol particles in the lowest atmospheric layer. Total particle number concentration and NOy mixing ratio increased in the corridor plumes, relative to background, by a factor 1.55 and 3.45, respectively. Titration, triggered by the enhanced presence of nitrogen compounds, led to a median ozone depletion of 19% in the corridor plumes. The enforcement of the Sulphur Emission Control Area (SECA) might be responsible for the minor sulphur dioxide increase (20%) in the corridor plumes. Ship traffic caused a minor enhancement of black carbon mass concentration, estimated to be around 10%. The study of individual ship plumes indicated that ship emitted aerosol was substantially different from background aerosol: fresh ship exhaust was preferentially enriched in aerosol particles with diameters below 100 nm and in black carbon particles with core diameters above 300-400 nm. With the present work the impact of marine traffic on the concentration and properties of atmospheric components within the marine boundary layer over the open water of the Southern Baltic Sea is assessed with airborne observations for the first time. Due to the high uncertainty affecting the estimations of ship emissions, this dataset represents a valuable reference for the assessment of ship emission inventories and related environmental-climatic impacts on the Southern Baltic Se

    Biogenic influence on the composition and growth of summertime Arctic aerosol

    No full text
    International audienceThe summertime Arctic lower troposphere is a relatively pristine background aerosol environment dominated by nucleation and Aitken mode particles. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties and therefore radiative balance and climate. We present aircraft-based observations of submicron aerosol composition from an aerosol mass spectrometer made during the NETCARE 2014 summertime arctic campaign, based in the Canadian High Arctic, at Resolute Bay, NU (74°N). Under stable and regionally influenced atmospheric conditions with low carbon monoxide and black carbon concentrations (3, respectively), we observed organic aerosol (OA)-to-sulfate ratios ranging from ~0.5 to > 6 with evidence for enhancement within the lower boundary layer. Methanesulfonic acid (MSA), a marker for the contribution of ocean-derived biogenic sulphur, was also observed in submicron aerosol. MSA-to-sulfate ratios ranged from near zero to ~0.3 and tended to increase within the lower boundary layer, suggesting a contribution to aerosol loading from the ocean. In one notable case while flying in the lower boundary layer above open water in Lancaster Sound, we observed growth of small particles, <20 nm in diameter, into sizes above 50 nm. Aerosol growth was correlated with the presence of organic species, trimethylamine, and MSA in particles ~80 nm and larger, where the organics were similar to those previously observed in marine settings. The organic-rich aerosol contributed significantly to particles active as cloud condensation nuclei (CCN, supersaturation = 0.6%). Our results highlight the potential importance of secondary organic aerosol formation and its role in growing nucleation mode aerosol into CCN-active sizes in this remote marine environment
    corecore