18 research outputs found

    Marine Carbonyl Sulfide (OCS) and Carbon Disulfide (CS\u3csub\u3e2\u3c/sub\u3e): A Compilation of Measurements in Seawater and the Marine Boundary Layer

    Get PDF
    Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have attracted increased interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished (mainly shipborne) measurements in seawater and the marine boundary layer for both gases, available at https://doi.org/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e., cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Closing the gap between centralized and decentralized compound management approaches.

    No full text
    The demand for organized storage concepts to maintain, collect and distribute compounds has grown not only at pharmaceutical companies, but also at smaller research organizations and academic laboratories where there is the demand to store and retrieve substances systematically. However, budget limitations have prevented these smaller groups from buying costly storage systems offered by specialized commercial vendors. On the other hand, within pharmaceutical companies a need for inexpensive and flexible storage concepts has developed and complements the existing automated archives. For reasons of efficiency, most companies have built centralized facilities holding large collections of internal medicinal chemistry compounds to assist various, globally distributed research programs. This standardization and centralization though is not always ideal for a global organization. Therefore, site specific and localized requirements need to be addressed to ensure quick on site access to compounds without losing the global accessibility to them. In this article, we describe an approach towards a low cost and highly flexible store concept with manual compound stores of variable design addressing local needs, created to complement the existing automated stores. A key component of our implementation is the Compound Store Manager software which is capable of administering the different global stores. The developed backend system and centralized data management facilitates the operation and integration of the stores into an existing store environment

    Marine carbonyl sulfide (OCS) and carbon disulfide (CS<sub>2</sub>): a compilation of measurements in seawater and the marine boundary layer

    No full text
    Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have gained interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2 uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished, mainly ship-borne measurements in seawater and the marine boundary layer for both gases, available at https://doi.pangaea.de/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e. cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations

    A database for carbonyl sulfide (OCS) and carbon disulfide (CS2) in seawater and marine boundary layer

    No full text
    The database includes measurements of the trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) in seawater (in picomol per liter) and the marine boundary layer (parts per trillion, ppt). It consists of individual datasets compiled from published original data, digitalization from publications (pdf documents) and unpublished data. Only shipborne measurements or measurements from time series stations with a dominant marine signal are included. The database contains mainly surface ocean measurements, but few available profiles down to >1000 m are included as well. Temporal resolution ranges from 12 minutes to hourly or monthly intervals. The database includes the following metadata (if available): latitude, longitude, depth, time of sampling, meteorological and physical parameters, main reference, method, contributor(s). The database is intended to facilitate model evaluation and the identification of global patterns. Data in excel and txt-files are identical
    corecore