7 research outputs found

    HHV-6 Specific T-Cell Immunity in Healthy Children and Adolescents

    Get PDF
    Objective: Primary infection with human herpes virus 6 (mainly HHV-6B) commonly occurs in the first 2 years of life leading to persistence and the possibility of virus reactivation later in life. Consequently, a specific cellular immune response is essential for effective control of virus reactivation. We have studied cell-mediated immune response to HHV-6 (U54) in healthy children and adolescents.Materials and Methods: By flow cytometry, the amount of cytokine (interferon gamma—IFN- γ, interleukin 2—IL-2, tumor necrosis factor alpha—TNF-α) secreting T-cells were measured after 10 days of pre-sensitization and 6 h of re-stimulation with mixtures of pooled overlapping peptides from U54, staphylococcal enterotoxin B (SEB, positive control), or Actin (negative control) in healthy children and adolescents without any underlying immune disorder or infectious disease.Results: All individuals showed a virus-specific response for at least one cytokine in either CD4+ or CD8+ cells. Percentages of individuals with HHV-6-specific TNF-α response in CD4+ (48% of individuals) as well as CD8+ (56% of individuals) were always the highest. Our data show significantly higher frequencies of HHV-6-specific TNF-α producing CD8+ T-cells in individuals older than 10 years of life (p = 0.033). Additionally, the frequency of HHV-6 specific TNF-α producing CD8+ T-cells positively correlated with the age of the individuals. Linear regression analysis showed a positive relation between age and frequency of HHV-6-specific TNF-α producing CD8+ T-cells.Conclusion: Results indicate that T-cell immune response against HHV-6 is commonly detectable in healthy children and adolescents with higher frequencies of antigen-specific T-cells in older children and adolescents possibly reflecting repeated stimulation by viral persistence and subclinical reactivation

    Eukaryotic translation initiation factor 4AI: a potential novel target in neuroblastoma

    Get PDF
    Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of eukaryotic initiation factors (eIFs) at the translation initiation. Especially the activity of the heterotrimeric eIF4F complex is often altered in malignant cells, since it is the direct connection to key oncogenic signaling pathways such as the PI3K/AKT/mTOR-pathway. A large body of literature exists that demonstrates targeting the translational machinery as a promising anti-neoplastic approach. The objective of this study was to determine whether eIF4F complex members are aberrantly expressed in NB and whether targeting parts of the complex may be a therapeutic strategy against NB. We show that eIF4AI is overexpressed in NB patient tissue using immunohistochemistry, immunoblotting, and RT-qPCR. NB cell lines exhibit decreased viability, increased apoptosis rates as well as changes in cell cycle distribution when treated with the synthetic rocaglate CR-1-31-B, which clamps eIF4A and eIF4F onto mRNA, resulting in a translational block. Additionally, this study reveals that CR-1-31-B is effective against NB cell lines at low nanomolar doses (≤20 nM), which have been shown to not affect non-malignant cells in previous studies. Thus, our study provides information of the expression status on eIF4AI in NB and offers initial promising insight into targeting translation initiation as an anti-tumorigenic approach for NB.R35 GM118173 - NIGMS NIH HHS; COMET CBmed - Österreichische Forschungsförderungsgesellschaft; 1 - CSRD VAPublished versio

    Unrelated CD3/CD19-depleted peripheral stem cell transplantation for Hurler syndrome

    Full text link
    For patients with mucopolysaccharidosis type IH (MPS1-H; Hurler syndrome), early allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice. One boy and one girl aged 20.5 and 22 months, respectively, with MPS1-H received a conditioning regimen consisting of thiotepa, fludarabine, treosulfan, and ATG. Grafts were peripheral blood stem cells from unrelated donors (10/12 and 11/11 matched), that were manipulated by CD3/CD19 depletion and contained 20.3 and 28.2 × 10(6) CD34+ cells/kg body weight, respectively. Both patients achieved stable hematopoietic engraftment and stable donor chimerism. Neither acute or chronic graft-versus-host disease (GVHD) nor other severe transplant-related complications occurred. At a follow-up of 48 and 37 months, both patients are alive and well with normal levels of α-L-iduronidase and have made major neurodevelopmental progress. Treosulfan-based conditioning offers the advantage of reduced toxicity; the use of unrelated CD3/CD19-depleted peripheral stem cell grafts allows transfusion of high CD34+ cell numbers together with a "tailored" number of CD3+ cells as well as engraftment facilitating cells in order to achieve rapid hematopoietic engraftment while reducing the risk of graft rejection and GVHD. This regimen might be an additional option when unrelated donor HSCT is considered for a patient with MPS1-H

    A Profound Basic Characterization of eIFs in Gliomas: Identifying eIF3I and 4H as Potential Novel Target Candidates in Glioma Therapy

    No full text
    Glioblastoma (GBM) is an utterly devastating cerebral neoplasm and current therapies only marginally improve patients’ overall survival (OS). The PI3K/AKT/mTOR pathway participates in gliomagenesis through regulation of cell growth and proliferation. Since it is an upstream regulator of the rate-limiting translation initiation step of protein synthesis, controlled by eukaryotic initiation factors (eIFs), we aimed for a profound basic characterization of 17 eIFs to identify potential novel therapeutic targets for gliomas. Therefore, we retrospectively analyzed expressions of mTOR-related proteins and eIFs in human astrocytoma samples (WHO grades I–IV) and compared them to non-neoplastic cortical control brain tissue (CCBT) using immunoblot analyses and immunohistochemistry. We examined mRNA expression using qRT-PCR and additionally performed in silico analyses to observe the influence of eIFs on patients’ survival. Protein and mRNA expressions of eIF3B, eIF3I, eIF4A1, eIF4H, eIF5 and eIF6 were significantly increased in high grade gliomas compared to CCBT and partially in low grade gliomas. However, short OS was only associated with high eIF3I gene expression in low grade gliomas, but not in GBM. In GBM, high eIF4H gene expression significantly correlated with shorter patient survival. In conclusion, we identified eIF3I and eIF4H as the most promising targets for future therapy for glioma patients

    No Overt Clinical Immunodeficiency Despite Immune Biological Abnormalities in Patients With Constitutional Mismatch Repair Deficiency

    Get PDF
    Immunoglobulin class-switch recombination (CSR) and somatic hypermutations (SHMs) are prerequisites for antibody and immunoglobulin receptor maturation and adaptive immune diversity. The mismatch repair (MMR) machinery, consisting of homologs of MutSα, MutLα, and MutSβ (MSH2/MSH6, MLH1/PMS2, and MSH2/MSH3, respectively) and other proteins, is involved in CSR, primarily acting as a backup for nonhomologous end-joining repair of activation-induced cytidine deaminase-induced DNA mismatches and, furthermore, in addition to error-prone polymerases, in the repair of SHM-induced DNA breaks. A varying degree of antibody formation defect, from IgA or selective IgG subclass deficiency to common variable immunodeficiency and hyper-IgM syndrome, has been detected in a small number of patients with constitutional mismatch repair deficiency (CMMRD) due to biallelic loss-of-function mutations in one of the MMR genes (PMS2, MSH6, MLH1, or MSH2). To elucidate the clinical relevance of a presumed primary immunodeficiency (PID) in CMMRD, we systematically collected clinical history and laboratory data of a cohort of 15 consecutive, unrelated patients (10 not previously reported) with homozygous/compound heterozygous mutations in PMS2 (n = 8), MSH6 (n = 5), and MLH1 (n = 2), most of whom manifested with typical malignancies during childhood. Detailed descriptions of their genotypes, phenotypes, and family histories are provided. Importantly, none of the patients showed any clinical warning signs of PID (infections, immune dysregulation, inflammation, failure to thrive, etc.). Furthermore, we could not detect uniform or specific patterns of laboratory abnormalities. The concentration of IgM was increased in 3 out of 12, reduced in 3 out of 12, and normal in 6 out of 12 patients, while concentrations of IgG and IgG subclasses, except IgG4, and of IgA, and specific antibody formation were normal in most. Class-switched B memory cells were reduced in 5 out of 12 patients, and in 9 out of 12 also the CD38hiIgM− plasmablasts were reduced. Furthermore, results of next generation sequencing-based analyses of antigen-selected B-cell receptor rearrangements showed a significantly reduced frequency of SHM and an increased number of rearranged immunoglobulin heavy chain (IGH) transcripts that use IGHG3, IGHG1, and IGHA1 subclasses. T cell subsets and receptor repertoires were unaffected. Together, neither clinical nor routine immunological laboratory parameters were consistently suggestive of PID in these CMMRD patients, but previously shown abnormalities in SHM and rearranged heavy chain transcripts were confirmed
    corecore