342 research outputs found

    A comparison of perceptions of barriers to academic success among high-ability students from high- and low-income groups: Exposing poverty of a different kind

    Get PDF
    In 14 focus group interviews, sixth- to eighth-grade high-ability students from high- (n = 36) and low-income (n = 45) families were asked to describe the barriers they perceived to their academic success. Three themes were identified through the qualitative analysis: Constraining Environments, Integration versus Isolation, and Resource Plenty versus Resource Poor. Students in both groups experienced environments not conducive to learning, inhibiting peers, and teachers as a barrier. Students in the low-income group described mayhem in their schools, which interfered significantly with learning. These students were highly integrated in their school community, whereas the students in the high-income group were socially isolated from both peers and teachers. Both groups exhibited issues of poor fit within their schools: autonomy and competence for both, relatedness for students in the high-income group. Attention to these issues will help support these students in achieving their potential

    Trabecular distribution of proximal tibia in extant apes

    Get PDF
    Extant apes are characterized by a wide range of locomotor, postural and manipulative behaviours that require each to use their limbs in different ways. In addition to external bone morphology, comparative investigation of trabecular bone can provide novel insights into bone functional adaptation. Two previous studies [1,2] have examined trabecular bone structure in the hominoid knee joint but have focused on the distal femur only. We build upon these previous studies to characterize trabecular structure of the proximal tibia in extant apes. Here we analyze the trabecular morphology of proximal tibial epiphysis of Homo sapiens (N = 25), Gorilla gorilla (N=13), Pan troglodytes verus (N = 15), and Pongo spp. (N = 7) to determine how variation in trabecular structure reflects differences in locomotor behaviour and to establish patterns of proximal tibia loading in extant taxa. Trabecular bone was imaged using microtomography with an isometric voxel resolution of 30-70 microns. Bone tissues were segmented using the medical image analysis (MIA) clustering method [3]. Canonical holistic morphometric analysis (cHMA) [4] was used to analyze relative bone volume fraction (rBV/TV) and patterns of rBV/TV distribution within and between taxa were investigated via principal component analysis (PCA). A PCA of rBV/TV shows clear separation between extant ape taxa. In humans, trabecular density is similarly concentrated in circular regions in the middle of both the medial and lateral condyles, which distinguishes them from all other apes on PC1. In African apes, the trabecular bone is denser on the medial side (penetrating the entire condyle) suggesting differential loading of the tibia plateau. [italics]Pongo[italics] also exhibits greater density on the medial side but differs from African apes in having less rBV/TV at the margins of the condyles. Values of rBV/TV under the articulation with proximal tibia (and on the thibial plateau) are significantly higher compared to rest of the lateral condyle in all taxa. [italics]Pongo[italics] (positive PC2) separates from [italics]Gorilla[italics] (negative PC2) due to the higher rBV/TV concentration in the middle of both tibial condyles on tibial plateau. Additionally, rBV/TV concentration is the lowest in orangutans, which separates them from gorillas (PC2) as well as from chimpanzees (PC3). Trabecular distribution in humans is consistent with an extended knee position and bipedal locomotion where the load is spread more equally between both tibial condyles. However, trabecular distribution in non-human apes is consistent with flexed knee positions compared to humans and with primarily medial loading due to the higher knee adduction moment, varus angle and ground reaction forces. The pattern of trabecular distribution in orangutans reflects their more variable knee joint postures during locomotion. These results provide the comparative context to interpret knee posture and, in turn, locomotor behaviours in fossil hominins

    Multi-year time series of daily solute and isotope measurements from three Swiss pre-Alpine catchments

    Get PDF
    Time series analyses of solute concentrations in streamwater and precipitation are powerful tools for unraveling the interplay of hydrological and biogeochemical processes at the catchment scale. While such datasets are available for many sites around the world, they often lack the necessary temporal resolution or are limited in the number of solutes they encompass. Here we present a multi-year dataset encompassing daily records of major ions and a range of trace metals in both streamwater and precipitation in three catchments in the northern Swiss Pre-Alps. These time series capture the temporal variability observed in solute concentrations in response to storm events, snow melt, and dry summer conditions. This dataset additionally includes stable water isotope data as an extension of a publicly available isotope dataset collected concurrently at the same locations, and together these data can provide insights into a range of ecohydrological processes and enable a suite of analyses into hydrologic and biogeochemical catchment functioning

    NextGen Flight Deck Data Comm: Auxiliary Synthetic Speech Phase I

    Get PDF
    Data Comm—a text-based controller-pilot communication system—is critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Interacting with a visual Data Comm display may yield an unsafe increase in head-down time, particularly for single-pilot operations. This study examined the feasibility of supplementing Data Comm with synthetic speech. To this end, thirty-two pilots flew two experimental scenarios in a Cessna 172 Flight Training Device. In one scenario, ATC communication was with a text-only Data Comm display, in the other, communication was with a text Data Comm display with synthetic speech that read aloud each message (i.e., text+speech). Pilots heard traffic with similar call signs on the party line and received a conditional clearance (in both scenarios); in either scenario, pilots received a clearance that was countermanded by a live controller. Results indicated that relative to the text-only display, the text+speech display aided single-pilot performance by reducing head-down time, and may have prevented participants from acting early on the conditional clearance. Supplementing text Data Comm with speech did not introduce additional complications: participants were neither more likely to erroneously respond to similar call signs, nor to ignore a live ATC countermand

    E,E-farnesol Inhibits Swarming Motility in \u3cem\u3eBurkholderia cepacia\u3c/em\u3e Through Rhamnolipid Production

    Get PDF
    Burkholderia cepacia and Candida albicans both exhibit cell-to-cell communication through the use of quorum-sensing molecules (QSM) known as autoinducers. E,E-farnesol is a QSM produced by C. albicans which regulates its conversion from yeast to mycelium. Because there is a positive correlation between the presence of B. cepacia and C. albicans in the lungs of individuals with cystic fibrosis (CF), we examined whether E,E-farnesol had an effect on swarming motility in B. cepacia. Swarming motility was inhibited when B. cepacia was exposed to 250 µM of E,E-farnesol. In addition, there was a 26.8% decrease in rhamnolipid production when cells were grown in the presence of E,E-farnesol. These biosurfactants are known to regulate swarming motility. Changes in the rhamnoplipid concentrations could account for the inhibition of swarming motility observed in the presence of E,E-farnesol. The effect of E,E-farnesol on B. cepacia biofilms was also examined because these complex-community structures are detrimental to the lungs of CF patients and are quorum-sensing regulated. Crystal violet staining showed that E,E-farnesol did not significantly affect biofilm formation in B. cepacia. Further studies are needed to determine the effects of E,E-farnesol on established B. cepacia biofilms and whether it can be combined with traditional antibiotics to disrupt these structures

    Trabecular distribution of distal femur in extant apes

    Get PDF
    Extant great apes are often used to model aspects of fossil hominin locomotor behaviours. Comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into the locomotor reconstruction of fossil taxa [1]. Here we analyze the distal femoral epiphysis of [italics]Homo sapiens[italics] (N = 26), [italics]Gorilla gorilla[italics] (N = 14), [italics]Pan troglodytes verus[italics] (N = 15), and [italics]Pongo[italics] sp. (N = 9) to determine how variation in trabecular structure reflects differences in locomotor behaviours. Canonical holistic morphometric analysis (cHMA) of relative bone volume fraction (rBV/TV) and degree of anisotropy (DA) is used to infer patterns of joint loading in extant taxa. A principal component analysis of rBV/TV and DA distributions show clear separation between taxa. Trabecular distribution in humans is consistent with medial (due to the ground reaction forces) and lateral (due to the resistance of the knee adduction moment provided by the quadriceps and gastrocnemius muscles and lateral collateral ligament) loading. Distribution in non-human apes is consistent with primarily medial loading due to the higher knee adduction moment, varus angle and ground reaction forces. Signals of a more extended knee in female gorillas compared to males (or chimpanzees) may reflect a more extended knee position during vertical climbing and higher arboreality in females [3]. Orangutans showed the most homogenous distribution of trabecular structure across both condyles, consistent with more variable knee joint postures. These results provide the comparative context to interpret knee posture and, in turn, locomotor behaviours in fossil hominins. References: [1] Georgiou, L., Dunmore, C. J., Bardo, A., Buck, L. T., Hublin, J. J., Pahr, D. H., ... & Skinner, M. M. (2020). Evidence for habitual climbing in a Pleistocene hominin in South Africa. Proceedings of the National Academy of Sciences, 117(15), 8416-8423. [2] Bachmann, S., Dunmore, C. J., Skinner, M. M., Pahr, D. H. and Synek, A. (2022). A computational framework for canonical holistic morphometric analysis of trabecular bone. Scientific Reports, 12, 1-13. [3] Isler, K. (2005). 3D‐kinematics of vertical climbing in hominoids. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 126(1), 66-81. Acknowledgments: For access to specimens we thank the following individuals/institutions: Max Planck Institute for Evolutionary Anthropology (C. Boesch, J-J. Hublin); Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science (F. Mayer, C. Funk); Powell-Cotton Museum (I. Livne); Royal Museum for Central Africa (E. Gilissen); University of Florence (J. Moggi-Cecchi, S. Bortoluzzi); Johann-Friedrich�Blumenback-Institute for Zoology and Anthropology, Georg-August University, Goettingen (B. Grosskopf); Frankfurt Senckenberg Museum (V. Volpato); University of the Witswatersand (L. Berger, B. Zipfel); Science Academy of the Czech Republic (J. Svoboda). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819960)

    Targeted Cattle Grazing to Enhance Sage-Grouse Brood-Rearing Habitat

    Get PDF
    Often, greater sage-grouse (Centrocercus urophasianus) brood-rearing habitats dominated by dense mountain big sagebrush (Artemisia tridentata vaseyana; >10-25% canopy cover) limit important forbs and arthropods sage-grouse rely on during summer. We investigated whether protein supplementation could concentrate cattle during fall to reduce sagebrush canopy cover and increase the diversity and abundance of forbs and arthropods. We applied targeted cattle grazing within three large, contiguous pastures in the Beaverhead Mountains of southwestern Montana. In each pasture, we selected one 4-ha macroplot of dense sagebrush (>30%). Within each macroplot, we placed low-moisture block protein supplement in four microsites (78.5-m2) and compared cattle response to four untreated control microsites. The following summer we measured herbaceous canopy cover and composition, shrub canopy cover, ground cover, forb and arthropod diversity, and arthropod density for each treated and untreated microsites. Mountain big sagebrush canopy cover was 71% less in treated vs. untreated microsites (11% vs. 38% canopy cover, respectively; P <0.001). Bite count observations indicated that sagebrush cover was reduced by cattle trampling rather than browsing, as sagebrush comprised <1% of cattle diets. Forb diversity was 13% greater in treated microsites (P = 0.094), forb species richness was 16% greater in treated microsites (P = 0.044), and forb composition trended higher in treated microsites (45% of herbaceous composition in treated microsites vs. 32% in untreated microsites; P = 0.106). Lepidoptera density trended 18% greater in treated microsites (P = .133). Our results indicate that protein supplementation during late fall can concentrate cattle to enhance sage-grouse brood-rearing habitat

    Trabecular distribution of distal femur in extant apes and Australopithecus sediba

    Get PDF
    Knee morphology of fossil hominins is of particular interest to paleoanthropologists due to longstanding debates about relative degrees of arboreality and terrestrial bipedalism in the hominin clade. In addition to external bone shape, the investigation of trabecular bone in the knee joint can provide insights into in vivo locomotor behavior of hominins [1-2]. The nearly complete right distal femur (U.W. 88-63) of Australopithecus sediba (1.98 Ma) shows a unique combination of condyles that resemble other australopith species and Homo-like anatomy of the patellar surface, which has been used to infer a unique locomotor pattern in this species [3]. Here we analyze the trabecular morphology of distal femoral epiphysis of Homo sapiens (N = 15), Gorilla gorilla (N=14), Pan troglodytes verus (N = 15), Pongo sp. (N = 9), and A. sediba (MH2) in order to 1) establish patterns of joint loading in extant taxa of known locomotor behaviour and 2) investigate joint loading in the knee of A. sediba. A canonical holistic morphometric analysis (cHMA), combining holistic morphometric analysis (HMA) and statistical free-form deformation model (SDM), approach was used to analyze the patterns of trabecular bone distribution following published protocols [4]. A principal component (PC) analysis of relative bone volume (rBV/TV) distribution shows clear separation between extant ape taxa. Positive values on PC1, PC2 and PC3 are mostly driven by rBV/TV concentrated on the patellar surface and on the posterior articular surface of the medial condyle separating humans from great apes (PC1, PC2) and chimpanzees (PC3) from humans, gorillas and orangutans. Negative PC1 is mostly driven by rBV/TV concentrated beneath the insertion of posterior cruciate ligament discriminating non-human apes from humans, negative PC2 by loadings on the patellar surface separating gorillas from others, and negative PC3 by loadings on the patellar surface and on the posterior articulation surface of the medial condyle discriminating orangutans from others. Results suggest that differences between humans and apes are primarily in the patellar articular surface. Relative bone volume in humans is concentrated in the posteroinferior region of the lateral condyle and on the lateral patellar surface, which is consistent with loading in an extended knee position during locomotion. In non-human apes relative bone volume is found to extend from the inferior margin of the patellar articulation to the posterior region of both condyles. However, in gorillas it does not extend as posterosuperiorly in the medial condyle as it does in chimpanzees and orangutans. Trabecular bone is concentrated in the lateral condyles in apes, with the greatest values in the posterosuperior and the posteroinferior regions. Unlike humans, ape like a trabecular concentration at the distal regions of both condyles (i.e., those assumed to be loaded in an extended knee), with the lowest values in orangutans. We suggest that this reflects predominant loading in a more flexed knee posture in great apes compared to humans. Finally, among apes, we found the most homogenous distribution of trabecular bone across both condyles in orangutans, which we relate to their more variable knee joint postures during locomotion. A. sediba shows trabecular concentrations on the patellar surface and on the posterior area of the lateral condyle. Values in the posteroinferior and posterosuperior regions of lateral condyle are generally higher than in medial condyle. We interpret these fossil results as reflective of loading the knee joint with a degree of flexion that differs somewhat from modern humans. However, taphonomic erosion of parts of the condyles hinders a complete assessment of trabecular bone distribution in A. sediba

    A theory-based online health behaviour intervention for new university students (U@Uni): results from a randomised controlled trial

    Get PDF
    BACKGROUND Too few young people engage in behaviours that reduce the risk of morbidity and premature mortality, such as eating healthily, being physically active, drinking sensibly and not smoking. This study sought to assess the efficacy and cost-effectiveness of a theory-based online health behaviour intervention (based on self-affirmation theory, the Theory of Planned Behaviour and implementation intentions) targeting these behaviours in new university students, in comparison to a measurement-only control. METHODS Two-weeks before starting university all incoming undergraduates at the University of Sheffield were invited to take part in a study of new students' health behaviour. A randomised controlled design, with a baseline questionnaire, and two follow-ups (1 and 6 months after starting university), was used to evaluate the intervention. Primary outcomes were measures of the four health behaviours targeted by the intervention at 6-month follow-up, i.e., portions of fruit and vegetables, metabolic equivalent of tasks (physical activity), units of alcohol, and smoking status. RESULTS The study recruited 1,445 students (intervention n = 736, control n = 709, 58% female, Mean age = 18.9 years), of whom 1,107 completed at least one follow-up (23% attrition). The intervention had a statistically significant effect on one primary outcome, smoking status at 6-month follow-up, with fewer smokers in the intervention arm (8.7%) than in the control arm (13.0%; Odds ratio = 1.92, p = .010). There were no significant intervention effects on the other primary outcomes (physical activity, alcohol or fruit and vegetable consumption) at 6-month follow-up. CONCLUSIONS The results of the RCT indicate that the online health behaviour intervention reduced smoking rates, but it had little effect on fruit and vegetable intake, physical activity or alcohol consumption, during the first six months at university. However, engagement with the intervention was low. Further research is needed before strong conclusions can be made regarding the likely effectiveness of the intervention to promote health lifestyle habits in new university students. TRIAL REGISTRATION Current Controlled Trials, ISRCTN67684181

    Trabecular architecture of the distal femur in extant hominids

    Get PDF
    Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re‐)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter‐ and intra‐specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins
    corecore