335 research outputs found

    Regulation of gene expression by photosynthetic signals triggered through modified CO(2 )availability

    Get PDF
    BACKGROUND: To coordinate metabolite fluxes and energy availability, plants adjust metabolism and gene expression to environmental changes through employment of interacting signalling pathways. RESULTS: Comparing the response of Arabidopsis wild-type plants with that of the mutants adg1, pgr1 and vtc1 upon altered CO(2)-availability, the regulatory role of the cellular energy status, photosynthetic electron transport, the redox state and concentration of ascorbate and glutathione and the assimilatory force was analyzed in relation to the transcript abundance of stress-responsive nuclear encoded genes and psaA and psbA encoding the reaction centre proteins of photosystem I and II, respectively. Transcript abundance of Bap1, Stp1, psaA and psaB was coupled with seven metabolic parameters. Especially for psaA and psaB, the complex analysis demonstrated that the assumed PQ-dependent redox control is subordinate to signals linked to the relative availability of 3-PGA and DHAP, which define the assimilatory force. For the transcripts of sAPx and Csd2 high correlations with the calculated redox state of NADPH were observed in pgr1, but not in wild-type, suggesting that in wild-type plants signals depending on thylakoid acidification overlay a predominant redox-signal. Strongest correlation with the redox state of ascorbate was observed for 2CPA, whose transcript abundance regulation however was almost insensitive to the ascorbate content demonstrating dominance of redox regulation over metabolite sensing. CONCLUSION: In the mutants, signalling pathways are partially uncoupled, demonstrating dominance of metabolic control of photoreaction centre expression over sensing the redox state of the PQ-pool. The balance between the cellular redox poise and the energy signature regulates sAPx and Csd2 transcript abundance, while 2CPA expression is primarily redox-controlled

    β-lactam antibiotic-induced release of lipoteichoic acid from Staphylococcus aureus leads to activation of neutrophil granulocytes

    Get PDF
    BACKGROUND: Polymorphonuclear neutrophil granulocytes (PMN) are phagocytes of the first line of antimicrobial defense. Previously we demonstrated that lipoteichoic acid (LTA) from Staphylococcus aureus (S. aureus) directly activates neutrophil granulocytes. Others have reported that exposure of S. aureus to β-lactam antibiotics leads to LTA release. In the present study we addressed the question whether exposure of S. aureus to β-lactam antibiotics or antibiotics of other groups results in the generation of PMN-stimulating activity and whether this activity can be attributed to LTA. METHODS: S. aureus were exposed to flucloxacillin, a β-lactam antibiotic or to the protein synthesis-inhibitors erythromycin and gentamicin, or to ciprofloxacin, a gyrase inhibitor. Supernatants of the antibiotic-treated bacteria were assayed for their LTA content and for their effect on PMN functions. RESULTS: We observed that exposure of S. aureus to flucloxacillin and, to a lesser degree to ciprofloxacin, but not to erythromycin or gentamicin led to LTA release. Co-incubation of neutrophil granulocytes with LTA-containing supernatants led to PMN activation as assed by morphological changes, release of IL-8, delay of spontaneous apoptosis and enhanced phagocytic activity. Depletion of LTA from the supernatants markedly reduced their PMN-activating capacity. CONCLUSION: The findings suggest that, via the activation of PMN, antibiotic-induced LTA release from S. aureus leads to enhanced antimicrobial activity of the innate immune defense mechanisms

    The 17th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders

    Get PDF
    The 17 th EFMC Short Course on Medicinal Chemistry took place April 23–26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.</p

    β2- and β3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines

    Get PDF
    Decreased activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, contributes to pain in humans and animals. Previously, we demonstrated that development of COMT-dependent pain is mediated by both β2- and β3-adrenergic receptors (β2-and β3ARs). Here, we investigated molecules downstream of β2-and β3ARs driving pain in animals with decreased COMT activity. Based on evidence linking their role in pain and synthesis downstream of β2- and β3AR stimulation, we hypothesized that nitric oxide (NO) and pro-inflammatory cytokines drive COMT-dependent pain. To test this, we measured plasma NO derivatives and cytokines in rats receiving the COMT inhibitor OR486 in the presence or absence of the β2AR antagonist ICI118,551 + β3AR antagonist SR59320A. We also assessed if the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) and cytokine neutralizing antibodies block the development of COMT-dependent pain. Results showed that animals receiving OR486 exhibited higher levels of NO derivatives, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in a β2-and β3AR-dependent manner. Additionally, inhibition of NO synthases and neutralization of the innate immunity cytokines TNFα, IL-1β, and IL-6 blocked the development of COMT-dependent pain. Finally, we found that NO influences TNFα, IL-1β, IL-6 and CCL2 levels, while TNFα and IL-6 influence NO levels. Altogether, these results demonstrate that β2- and β3ARs contribute to COMT-dependent pain, at least partly, by increasing NO and cytokines. Furthermore, they identify β2- and β3ARs, NO, and pro-inflammatory cytokines as potential therapeutic targets for pain patients with abnormalities in COMT physiology

    A prognostic baseline blood biomarker and tumor growth kinetics integrated model in paclitaxel/platinum treated advanced non-small cell lung cancer patients

    Get PDF
    Paclitaxel/platinum chemotherapy, the backbone of standard first-line treatment of advanced non-small cell lung cancer (NSCLC), exhibits high interpatient variability in treatment response and high toxicity burden. Baseline blood biomarker concentrations and tumor size (sum of diameters) at week 8 relative to baseline (RS8) are widely investigated prognostic factors. However, joint analysis of data on demographic/clinical characteristics, blood biomarker levels, and chemotherapy exposure-driven early tumor response for improved prediction of overall survival (OS) is clinically not established. We developed a Weibull time-to-event model to predict OS, leveraging data from 365 patients receiving paclitaxel/platinum combination chemotherapy once every three weeks for ≤six cycles. A developed tumor growth inhibition model, combining linear tumor growth and first-order paclitaxel area under the concentration-time curve-induced tumor decay, was used to derive individual RS8. The median model-derived RS8 in all patients was a 20.0% tumor size reduction (range from −78% to +15%). Whereas baseline carcinoembryonic antigen, cytokeratin fragments, and thyroid stimulating hormone levels were not significantly associated with OS in a subset of 221 patients, and lactate dehydrogenase, interleukin-6 and neutrophil-to-lymphocyte ratio levels were significant only in univariate analyses (p value < 0.05); C-reactive protein (CRP) in combination with RS8 most significantly affected OS (p value < 0.01). Compared to the median population OS of 11.3 months, OS was 128% longer at the 5th percentile levels of both covariates and 60% shorter at their 95th percentiles levels. The combined paclitaxel exposure-driven RS8 and baseline blood CRP concentrations enables early individual prognostic predictions for different paclitaxel dosing regimens, forming the basis for treatment decision and optimizing paclitaxel/platinum-based advanced NSCLC chemotherapy

    A highly potent, orally bioavailable pyrazole-derived cannabinoid CB2 receptor-selective full agonist for in vivo studies.

    Get PDF
    The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein mediated efflux from the brain. 3H and 14C labelled RNB-61 showed apparent K d values 6000-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands

    Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis.

    Get PDF
    BACKGROUND:Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS:Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS:Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS:Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE

    A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies.

    Get PDF
    The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands

    History of Comorbid Orofacial Pain Among Women with Vulvar Vestibulitis Syndrome

    Get PDF
    Introduction: • Vestibulodynia is the most common from of chronic vulvovaginal pain affecting nearly 1 in 10 women at some point in their lifetime • The diagnosis of vestibulodynia is diagnosis of “exclusion” in that it is rendered only after excluding other “known causes” of persistent pain upon genital contact (i.e. tampon use) and tenderness to pressure localized within the vulvar mucosa (vestibule) and the etiology and natural history of vestibulodynia remains poorly understood • An emerging body of evidence supports the notion of vestibulodynia as a complex pain disorder of urogenital region • Women with vestibulodynia have higher pain sensitivity on mucosal contact in non-genital sites • Also, these women have a higher prevalence of psychological distress, such as somatization and anxiety • These observations suggest that women with vestibulodynia may have an alteration in pain processing pathways similar to that seen in other pain disorders • We hypothesize that vestibulodynia is a group of disorders characterized by dysfunctions in the vestibular mucosa (i.e., heightened inflammatory response) and central pain processing pathways • In previous work we identified that orofacial pain (OFP) might be a clinical marker for a state of pain amplification among women with vestibulodynia • Co-morbid OFP was highly prevalent in our cohort of vestibulodynia patients • The objective of this study is to examine the stability of OFP symptoms two years after the initial examination while investigating the reliability of our baseline observations on the clinical correlates of comorbid OFP
    corecore