775 research outputs found

    Feedback-regulated Super Massive Black Hole Seed Formation

    Full text link
    The nature of the seeds of high-redshift supermassive black holes (SMBHs) is a key question in cosmology. Direct collapse black holes (DCBH) that form in pristine, atomic-line cooling halos, illuminated by a Lyman-Werner (LW) UV flux exceeding a critical threshold J_crit, represent an attractive possibility. We investigate when and where these conditions are met during cosmic evolution. For the LW intensity, J_LW, we account for departures from the background value in close proximity to star forming galaxies. For the pristine halo fraction, we account for both (i) supernova driven outflows, and (ii) the inherent pollution from progenitor halos. We estimate the abundance of DCBH formation sites, n_DCBH(z), and find that it increases with cosmic time from n_DCBH(z=20) ~ 1e-12 -1e-7 cMpc^-3 to n_DCBH(z=10) ~ 1e-10 - 1e-5 cMpc^-3. Our analysis shows the possible importance of galactic winds, which can suppress the predicted n_DCBH by several orders of magnitude, and cause DCBH formation to preferentially occur around the UV-brightest (M_UV ~ -22 to -20) star forming galaxies. Our analysis further highlights the dependence of these predictions on (i) the escape fraction of LW photons, (ii) J_crit, and (iii) the galactic outflow prescription.Comment: 13 pages, 9 figures, accepted to MNRA

    Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension

    Full text link
    We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter s using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transition using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length k. We find that the gas-liquid phase separation is stable for k s <= 4, and that the critical temperature decreases upon increasing the screening of the interaction (decreasing the range of the interaction). In addition, we determine the gas-liquid interfacial tension using grand-canonical Monte Carlo simulations. The interfacial tension decreases upon increasing the range of the interaction. In particular, we find that simple scaling can be used to relate the interfacial tension of the YRPM to that of the restricted primitive model, where particles interact with bare Coulomb interactions.Comment: 17 pages, 6 Figures, accepted for publication in J. Chem. Phy

    Can the intergalactic medium cause a rapid drop in Lyman alpha emission at z>6?

    Get PDF
    The large cross-section of the Lyman alpha (Lya) line makes it a sensitive probe of the ionization state of the intergalactic medium (IGM). Here we present the most complete study to date of the IGM Lya opacity, and its application to the redshift evolution of the 'Lya fraction', i.e. the fraction of color-selected galaxies with a detectable Lya emission line. We use a tiered approach, which combines large-scale semi-numeric simulations of reionization with moderate-scale hydrodynamic simulations of the ionized IGM. This allows us to simultaneously account for evolution in both: (i) the opacity from an incomplete (patchy) reionization, parameterized by the filling factor of ionized regions, Q_HII; and (ii) the opacity from self-shielded systems in the ionized IGM, parameterized by the average photo-ionization rate inside HII regions, \Gamma. In contrast to recent empirical models, attenuation from patchy reionization has a unimodal distribution along different sightlines, while attenuation from self-shielded systems is more bimodal. We quantify the average IGM transmission in our (Q_HII, \Gamma) parameter space, which can easily be used to interpret new data sets. Using current observations, we predict that the Lya fraction cannot drop by more than a factor of ~2 with IGM attenuation alone, even for HII filling factors as low as Q_HII>0.1. Larger changes in the Lya fraction could result from a co-evolution with galaxy properties. Marginalizing over \Gamma, we find that current observations constrain Q_HII < 0.6 at z=7 [68% confidence level (C.L.)]. However, all of our parameter space is consistent with observations at 95% C.L., highlighting the need for larger observational samples at z >= 6.Comment: 12 pages, 10 figures, MNRAS submitte

    Crystallization and gelation in colloidal systems with short-ranged attractive interactions

    Full text link
    We systematically study the relationship between equilibrium and non-equilibrium phase diagrams of a system of short-ranged attractive colloids. Using Monte Carlo and Brownian dynamics simulations we find a window of enhanced crystallization that is limited at high interaction strength by a slowing down of the dynamics and at low interaction strength by the high nucleation barrier. We find that the crystallization is enhanced by the metastable gas-liquid binodal by means of a two-stage crystallization process. First, the formation of a dense liquid is observed and second the crystal nucleates within the dense fluid. In addition, we find at low colloid packing fractions a fluid of clusters, and at higher colloid packing fractions a percolating network due to an arrested gas-liquid phase separation that we identify with gelation. We find that this arrest is due to crystallization at low interaction energy and it is caused by a slowing down of the dynamics at high interaction strength. Likewise, we observe that the clusters which are formed at low colloid packing fractions are crystalline at low interaction energy, but glassy at high interaction energy. The clusters coalesce upon encounter.Comment: 8 pages, 8 figure

    Effects of tailoring ingredients in auditory persuasive health messages on fruit and vegetable intake

    Get PDF
    Objective: Health messages can be tailored by applying different tailoring ingredients, among which personalisation, feedback and adaptation. This experiment investigated the separate effects of these tailoring ingredients on behaviour in auditory health persuasion. Furthermore, the moderating effect of self-efficacy was assessed.Design: The between-participants design consisted of four conditions. A generic health message served as a control condition; personalisation was applied using the recipient's first name, feedback was given on the personal state, or the message was adapted to the recipient's value.Main outcome measures: The study consisted of a pre-test questionnaire (measuring fruit and vegetable intake and perceived difficulty of performing these behaviours, indicating self-efficacy), exposure to the auditory message and a follow-up questionnaire measuring fruit and vegetable intake two weeks after message exposure (n=112).Results: ANCOVAs showed no main effect of condition on either fruit or vegetable intake, but a moderation was found on vegetable intake: When self-efficacy was low, vegetable intake was higher after listening to the personalisation message. No significant differences between the conditions were found when self-efficacy was high.Conclusion: Individuals with low self-efficacy seemed to benefit from incorporating personalisation, but only regarding vegetable consumption. This finding warrants further investigation in tailoring research

    Phase behavior of hard spheres confined between parallel hard plates: Manipulation of colloidal crystal structures by confinement

    Full text link
    We study the phase behavior of hard spheres confined between two parallel hard plates using extensive computer simulations. We determine the full equilibrium phase diagram for arbitrary densities and plate separations from one to five hard-sphere diameters using free energy calculations. We find a first-order fluid-solid transition, which corresponds to either capillary freezing or melting depending on the plate separation. The coexisting solid phase consists of crystalline layers with either triangular or square symmetry. Increasing the plate separation, we find a sequence of crystal structures from n triangular to (n+1) square to (n+1) triangular, where n is the number of crystal layers, in agreement with experiments on colloids. At high densities, the transition between square to triangular phases are intervened by intermediate structures, e.g., prism, buckled, and rhombic phases.Comment: 9 pages, 4 figures. Accepted for publication in J. Phys.: Condens. Matte

    Effect of excluded volume interactions on the interfacial properties of colloid-polymer mixtures

    Get PDF
    We report a numerical study of equilibrium phase-diagrams and interfacial properties of bulk and confined colloid-polymer mixtures using grand canonical Monte Carlo simulations. Colloidal particles are treated as hard spheres, while the polymer chains are described as soft repulsive spheres. The polymer-polymer, colloid-polymer, and wall-polymer interactions are described by density-dependent potentials derived by Bolhuis and Louis [Macromolecules, 35 (2002), p.1860]. We compared our results with those of the Asakura-Oosawa-Vrij model, that treats the polymers as ideal particles. We find that the number of polymers needed to drive the demixing transition is larger for the interacting polymers, and that the gas-liquid interfacial tension is smaller. When the system is confined between two parallel hard plates, we find capillary condensation. Compared with the AOV model, we find that the excluded volume interactions between the polymers suppress capillary condensation. In order to induce capillary condensation, smaller undersaturations and smaller plate separations are needed in comparison with ideal polymers.Comment: 9 pages, 10 figures, accepted for publication in the J. Chem. Phy

    Ancient giants: on the farthest galaxy at z=8.6

    Full text link
    The observational frontiers for the detection of high-redshift galaxies have recently been pushed to unimaginable distances with the record-holding Lyman Alpha Emitter (LAE) UDFy-38135539 discovered at redshift z=8.6. However, the physical nature and the implications of this discovery have yet to be assessed. By selecting galaxies with observed luminosities similar to UDFy-38135539 in state-of-the-art cosmological simulations tuned to reproduce the large scale properties of LAEs, we bracket the physical nature of UDFy-38135539: it has a star formation rate ~ 2.7-3.7 solar masses/yr, it contains ~ 10^{8.3-8.7} solar mass of stars 50-80 Myr old, with stellar metallicity ~ 0.03-0.12 of the solar value. For any of the simulated galaxies to be visible as a LAE in the observed range, the intergalactic neutral hydrogen fraction at z=8.6 must be <= 0.2 and extra ionizing radiation from sources clustered around UDFy-38135539 is necessary. Finally, we predict that there is a 70% (15%) probability of detecting at least 1 such source from JWST (HST/WFC3) observations in a physical radius ~ 0.4 Mpc around UDFy-38135539.Comment: Accepted to MNRAS letter

    The cool side of Lyman Alpha Emitters

    Full text link
    We extend a previous study of Lyman Alpha Emitters (LAEs) based on hydrodynamical cosmological simulations, by including two physical processes important for LAEs: (a) Lyman Alpha and continuum luminosities produced by cooling of collisionally excited HI in the galaxy, (b) dust formation and evolution; we follow these processes on a galaxy-by-galaxy basis. HI cooling on average contributes 16-18% of the Lyman Alpha radiation produced by stars, but this value can be much higher in low mass LAEs and further increased if the HI is clumpy. The continuum luminosity is instead almost completely dominated by stellar sources. The dust content of galaxies scales with their stellar mass, M_{dust} is proportional to M_*^0.7 and stellar metallicity, Z_*, such that M_{dust} is proportional to Z_*^1.7. As a result, the massive galaxies have Lyman Alpha escape fraction as low as f_alpha=0.1, with a LAE-averaged value decreasing with redshift such that it is (0.33,0.23) at z =(5.7,6.6). The UV continuum escape fraction shows the opposite trend with redshift, possibly resulting from clumpiness evolution. The model successfully reproduces the observed Lyman Alpha and UV luminosity functions at different redshifts and the Lyman Alpha equivalent width scatter to a large degree, although the observed distribution appears to be more more extended than the predicted one. We discuss possible reasons for such tension.Comment: 9 pages, accepted for publication in MNRA

    Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    Full text link
    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened-Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened-Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases, upon increasing the range of the screened-Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens. Matte
    corecore