123 research outputs found

    Molecular locks and keys: the role of small molecules in phytohormone research

    Get PDF
    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.This work was partially funded by the National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2014-06468 to Abel Rosado and funding from the Canada Research Chairs program. John Vaughan-Hirsch is funded through the BBSRC Doctoral Training Programme. Anthony Bishopp is supported by the Royal Society through a University Research Fellowship. Andrea Chini is supported by a “Ramon y Cajal” fellowship (RYC-2010-05680) and this work was partially funded the Ministerio de Economía y Competitividad project BIO2013-44407-R, the AECID AP/040886/11 and the CSIC i-COOP060. This project was supported by NSTIP strategic technologies programs, number (11-BIO-2119-02) in the Kingdom of Saudi Arabia to Andrea Chini.Peer reviewedPeer Reviewe

    Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a

    Get PDF
    Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1), which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies. While animal PP1s were reported to play relevant roles in controlling multiple cellular processes, plant orthologs remain poorly studied. To decipher the role of plant PP1s, we compared PP1 genes from three monocot species, Brachypodium, common wheat and rice at the genomic and transcriptomic levels. To gain more insight into the wheat PP1 proteins, we identified and characterized TdPP1a, the first wheat type one protein phosphatase from a Tunisian durum wheat variety Oum Rabiaa3. TdPP1a is highly conserved in sequence and structure when compared to mammalian, yeast and other plant PP1s. We demonstrate that TdPP1a is an active, metallo-dependent phosphatase in vitro and is able to interact with AtI2, a typical regulator of PP1 functions. Also, TdPP1a is capable to complement the heat stress sensitivity of the yeast mutant indicating that TdPP1a is functional also in vivo. Moreover, transient expression of TdPP1a::GFP in tobacco leaves revealed that it is ubiquitously distributed within the cell, with a strong accumulation in the nucleus. Finally, transcriptional analyses showed similar expression levels in roots and leaves of durum wheat seedlings. Interestingly, the expression in leaves is significantly induced following salinity stress, suggesting a potential role of TdPP1a in wheat salt stress response

    The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis

    No full text
    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.S.G-I was supported by a ‘‘Juan de la Cierva’’ fellowship from the Spanish Ministry for Science and Innovation. This work was funded by the Spanish Ministry for Science and Innovation grants BIO2010-21739, CSD2007-00057 and EUI2008- 03666 to R.S. J.P.R is an Australian Research Council Future Fellow (FT0992129)

    The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    Get PDF
    BACKGROUND: GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. AIMS: To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. METHODS: Colitis was induced in wild type and GP-BAR1(-/-) mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. RESULTS: GP-BAR1(-/-) mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. CONCLUSIONS: GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand

    JAZ2 controls stomata dynamics during bacterial invasion

    Get PDF
    Coronatine (COR) facilitates entry of bacteria into the plant apoplast by stimulating stomata opening. COR-induced signaling events at stomata remain unclear. We found that the COR and jasmonate isoleucine (JA-Ile) co-receptor JAZ2 is constitutively expressed in guard cells and modulates stomatal dynamics during bacterial invasion. We analyzed tissue expression patterns of AtJAZ genes and measured stomata opening and pathogen resistance in loss- and gain-of-function mutants. Arabidopsis jaz2 mutants are partially impaired in pathogen-induced stomatal closing and more susceptible to Pseudomonas. Gain-of-function mutations in JAZ2 prevent stomatal reopening by COR and are highly resistant to bacterial penetration. The JAZ2 targets MYC2, MYC3 and MYC4 directly regulate the expression of ANAC19, ANAC55 and ANAC72 to modulate stomata aperture. Due to the antagonistic interactions between the salicylic acid (SA) and JA defense pathways, efforts to increase resistance to biotrophs result in enhanced susceptibility to necrotrophs, and vice versa. Remarkably, dominant jaz2Δjas mutants are resistant to Pseudomonas syringae but retain unaltered resistance against necrotrophs. Our results demonstrate the existence of a COI1-JAZ2-MYC2,3,4-ANAC19,55,72 module responsible for the regulation of stomatal aperture that is hijacked by bacterial COR to promote infection. They also provide novel strategies for crop protection against biotrophs without compromising resistance to necrotrophs

    G-CLASS: geosynchronous radar for water cycle science - orbit selection and system design

    Get PDF
    The mission geosynchronous – continental land atmosphere sensing system (G-CLASS) is designed to study the diurnal water cycle, using geosynchronous radar. Although the water cycle is vital to human society, processes on timescales less than a day are very poorly observed from space. G-CLASS, using C-band geosynchronous radar, could transform this. Its science objectives address intense storms and high resolution weather prediction, and significant diurnal processes such as snow melt and soil moisture change, with societal impacts including agriculture, water resource management, flooding, and landslides. Secondary objectives relate to ground motion observations for earthquake, volcano, and subsidence monitoring. The orbit chosen for G-CLASS is designed to avoid the geosynchronous protected region and enables integration times of minutes to an hour to achieve resolutions down to ∼20 m. Geosynchronous orbit (GEO) enables high temporal resolution imaging (up to several images per hour), rapid response, and very flexible imaging modes which can provide much improved coverage at low latitudes. The G-CLASS system design is based on a standard small geosynchronous satellite and meets the requirements of ESA's Earth Explorer 10 call

    Mechanisms of Step-Stress Degradation In Carbon-Doped 0.15 μm AlGaN/GaN HEMTs for Power RF Applications

    Get PDF
    We discuss the degradation mechanisms of C-doped 0.15-μm gate AlGaN/GaN HEMTs tested by drain step-stress experiments. Experimental results show that these devices exhibit cumulative degradation effects during the step stress experiments in terms of either (i) transconductance (gm) decrease without any threshold-voltage (VT) change under OFF-state stress, or (ii) both VT and gm decrease under ON-state stress conditions. To aid the interpretation of the experiments, two-dimensional hydrodynamic device simulations were carried out. Based on obtained results, we attribute the gm decrease accumulating under OFF-state stress to hole emission from CN acceptor traps in the gate-drain access region of the buffer, resulting in an increase in the drain access resistance. On the other hand, under ON-state stress, channel hot electrons are suggested to be injected into the buffer under the gate and in the gate-drain region where they can be captured by CN traps, leading to VT and gm degradation, respectively
    corecore