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Abstract 

A transgenic Arabidopsis line containing a chimeric PR-I: :luciferase (LUG) reporter 

gene was subjected to mutagenesis with activation tags. Screening of lines via high 
throughput LUC imaging identified a number of dominant Arabidopsis mutants that 

exhibited enhanced PR-i gene expression. Here we report the characterisation of one of 
these mutants, designated activated disease resistance (adr) 1. This line showed 

constitutive expression of a number of key defence marker genes and accumulated 
salicylic acid, but not ethylene or jasmonic acid. Furthermore, adri plants exhibited 

resistance against the biotrophic pathogens Peronospora parasitica and Erysiphe 

cichoracearum but not the necrotrophic fungus Botytis cineria. Analysis of a series of 

adri double mutants suggested that adri -mediated resistance against P. parasitica was 

SA-dependent, while resistance against E. cichoracearum was both SA-dependent and 
partially NPR1-dependent. The controlled, transient expression of I4DR1 conveyed 

striking disease resistance in the absence of yield penalty, highlighting the potential 
utility of this gene in crop protection. 

The ADRJ gene encoded a protein possessing a number of key features including 
homology to subdomains of protein kinases, a nucleotide binding domain and leucine 
rich repeats. Sequence analysis revealed that ADR1 is a member of a small atypical 

Arabidopsis sub-class containing four CC-NBS-LRR genes. In addition, homologous 
genes were uncovered in many phylogenetically distant and agronomically important 
plant species; their sequence analysis revealed a number of consensus motifs unique and 
distinctive for the ADR1 family. 

Furthermore, we show that either constitutive or conditional enhanced expression of 
ADRJ conferred significant drought tolerance. This was not a general feature of defence-
related mutants because ciri, cir2 and cpri, which constitutively express SAR, failed to 

exhibit this phenotype. Cross-tolerance was not a characteristic of adri plants, rather 

they showed increased sensitivity to thermal and salinity stress. Hence, adrl activated 

signalling may antagonise some stress responses. Northern analysis of abiotic marker 
genes revealed that DREB2A but not DREBJA, RD29A or RD22 were expressed in adri 

plant lines. Moreover, DREB2A expression was SA-dependent but NPRI -independent. 

Microarray analyses, of plants containing a conditional ADR1 allele, demonstrated that a 
significant number of the up-regulated genes had been previously implicated in 
responses to dehydration. Therefore, biotic and abiotic signalling pathways may share 
multiple nodes and their outputs may have significant functional overlap. 

Additionally, a large activation tagged population was screened in order to isolate novel 
mutants altered in disease susceptibility. Here we report the characterisation of one 
mutant, designated activated disease susceptibility (ads) 1. This line was confirmed to 

concurrently exhibit increased susceptibility to hemi-biotrophic, necrotrophic and non-
host pathogens. 
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"The desire to know is natural to good men ... one day the world will look upon research 

on plants as it now looks on human beings" 

Leonardo da Vinci, 1452 - 1519 

1) Introduction 

1.1 General Context 

Plants cannot move to escape environmental challenges; some of these biotic stresses are 

markedly critical. In fact, a myriad of potential pathogens, fungi, bacteria, nematodes 

and insects obtain products metabolised by plants, and viruses use replication systems at 

the host's expense. Therefore, plants have evolved sophisticated mechanisms to detect 

such attacks and to translate that perception into an adaptive response. 

The complex and refined systems evolved by plants enable them to successfully 

withstand infection by the vast majority of potential pathogens. What makes this 

achievement truly remarkable is the sheer diversity of infection mechanisms that these 

pathogens use. While most immunologists may view the mammalian immune system as 

a pinnacle of evolution, natural selection has honed the defence system of plants over 

1.6 billion years without recourse to antibodies, T cells and similar mechanisms, 

producing strategies no less refined or effective. Nevertheless, recent findings have 

highlighted remarkable similarities in the innate defence systems of plants, animals and 

insects (van der Biezen and Jones, 1998; Nurenberger and Brunner, 2002). It is 

surprising that recognition of pathogen associated molecular patterns, presence of 

proteins sharing similar domains in recognition complexes, MAPK-mediated activation 

of immune response genes and subsequent production of antimicrobial products 

similarly occur in both plant and animal kingdoms (Staskawicz et al., 2001; Nurenberger 

and Brunner, 2002). 
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Though plants can recognize and mount successful defence against a vast majority of 

pathogens, it has been estimated that at least 12% of potential global crop production is 

lost annually to pre-harvest plant disease (Baker et al., 1997; Shah, 1997; Trewavas, 

2001). Despite the development and use of an increasing number of pesticides and 

fungicides, crop losses due to disease still continue. Plant breeding has been used to 

introduce genes from wild populations into commercial crop cultivars, but this resistance 

is often not durable as pathogens are able to evolve quickly and overcome it (Pink and 

Puddephat, 1999; Jones, 2001; McDowell and Woffenden, 2003). Nowadays agriculture, 

which is heavily dependent on the chemical control of a multitude of pathogens, 

demands unsustainable environmental and economic costs (Trewavas, 2001). In 

developing countries, where chemicals are often an unaffordable luxury, crop losses are 

often measured in term of human starvation and death. This is likely to deteriorate in the 

near future; global population is predicted to reach its peak by 2025 when there will be 

an estimated 2.3 billion extra people on the earth, with 95% of this growth occurring in 

less developed countries (Trewavas, 2001). 

Therefore alternative strategies for sustainable agriculture, respecting the natural 

environmental balance and taking into account the global population increase, must be 

achieved. Advances in our understanding of plant defence systems and recent progresses 

in biotechnology offer new tools to control plant disease through the development of 

more efficient and environmentally friendly pesticides, resistant germplasm and the 

genetic engineering of plants with enhanced resistance against diseases (Stuiver and 

Custers, 2001; Hammond-Kosack and Parker, 2003). 

Although several attempts have been made to engineer durable disease resistance, 

unfortunately, many of these efforts have failed due to the complexity of disease 

resistance signalling and the sheer diversity of pathogen infection mechanisms (Stuiver 

and Custers, 2001). Alternatively, transgenic plants that exhibited durable disease 

resistance could not be commercially exploited because of the detrimental effects on 

plant growth, development and crop yield (Purrington, 2000; Hammond-Kosack and 

Parker, 2003). Moreover, the pervasive negative reporting of so-called genetically 
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modified (GM) crops in the media has greatly damaged the general public opinion on 

potential benefits offered by progress in biotechnology. Nonetheless, "second 

generation" GM crops may be more acceptable to a currently mistrustful public. 

The overall aim of the work described in this thesis was to gain further understanding 

into the genetic basis of plant defence. More indirectly, this research might contribute to 

the development of crops with enhanced disease resistance. 

1.2 Gene-for-gene resistance and hypersensitive response 

Plants are constantly subject to attack by a plethora of pathogens. If during an interaction 

with a plant, the pathogen is able to penetrate the plant and cause disease, the pathogen 

is said to be virulent, the plant susceptible and the interaction compatible. On the other 

hand, plant may be able to activate defence responses promptly, thus preventing the 

development of the disease. In this case the pathogen is said to be avirulent, the plant 

resistant and the interaction incompatible (Staskawicz et al., 1995; Dangl et al., 1996). 

1.2.1 Gene-for-gene hypothesis 

In the gene-for-gene interaction model, first proposed by Flor thirty years ago, an 

incompatible interaction was hypothesised to occur after the recognition of an avirulance 

(avr) gene product by the corresponding plant resistance (R) gene product (Flor, 1971). 

R-avr interactions have been observed between plants and many different pathogens, 

including bacteria, fungi, viruses and nematodes (Dangi et al., 1996; Heath, 2000; 

Hammond-Kosack and Parker, 2003). The mechanism for incompatible interaction 

requires that the R product specifically recognises an avr gene product and triggers a 

signal transduction cascade, which culminates in the activation of defence mechanisms 

and the arrest of pathogen infection (Flor, 1971; Staskawicz et al., 1995; Baker et al., 

1997; Yang et al., 1997). 
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1.2.1 PlantR genes 

R-avr interactions were hypothesised to be extremely specific, thus these molecules have 

been intensively investigated and during the last decade several R genes from model 

plants and crop species have been identified and cloned (Ellis et al., 2000; Dangl and 

Jones, 2001; Hammond-Kosack and Parker, 2003). The R genes isolated to date can 

modulate resistance against bacteria, fungi and viruses as well as nematodes and insects 

(Dangl and Jones, 2001). Despite the wide range of pathogen species and the presumed 

difference in their pathogenicity effector molecules, R genes encoded only five classes 

of proteins (Bent, 1996; Ellis et al., 2000; Dangl and Jones, 2001). Most of these genes 

have been initially identified in model plants, such as Arabidopsis, tobacco and rice, but 

the presence of homologues in many divergent plant species has been now confirmed 

(Meyers et al., 1998; Cannon et al., 2002; Hammond-Kosack and Parker, 2003). 

The largest R gene group, designated as class 1, encoded for nucleotide-binding site 

!eucine-rich repeat (NBS-LRR) class of proteins (Jones, 2001; Meyers et al., 2003). The 

NES domain was generally located in the central portion of the protein and was required 

for ATP and GTP binding (Saraste et al., 1990). Several conserved motifs have been 

identified in the NES domain and they are described in Chapter 8. The LRR domain 

defined a conserved structural region with a variable number of carboxy-terminal LRRs, 

which function in direct protein-protein interaction, peptide-ligand binding and protein-

carbohydrate interaction (Jones and Jones, 1996; Bent et al., 1996; Jia et al., 2000; 

Thomas et al., 1996). This class of R proteins was further subdivided into two subclasses 

based on the structure of the N-terminal region. Proteins containing a domain showing 

high homology with the Ioll/interleukin-1 Receptor (TIR) were classified as IIR-iBS-

LRR (TNL) (Meyers et al., 1999; Pan et al., 2000a). Both Drosophila Toll proteins and 

mammalian immune response Interleukin receptors play a role in defence (Baker et al., 

1997). Most of the NBS-LRR proteins lacking the TIR domain showed aoiled-oil (CC) 

motif in the N-terminal region; thus they were designated as C-NBS-IRR  (CNL) (Pan 

et al., 2000a; Meyers et al., 1999). 
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The R proteins which did not show NBS-LRR structure were subdivided into four 

further classes (Dangi and Jones, 2001). The second group consisted of several Cf genes 

that encoded for proteins with three characteristic domains: an extracelluar LRR region, 

a transmembrane domain and a short cytoplasmatic peptide (Jones and Jones, 1996; 

Dixon, 2000). R genes included in the third class encoded cytoplasmatic protein kinases; 

for example, tomato Pto encoded a Ser/Thr kinase whose activation conferred disease 

resistance (Martin et al., 1993). The fourth class of R genes encoded proteins showing 

three specific structural domains: an extracelluar LRR domain, a transmembrane motif 

and a cytoplasmatic protein kinase domain (Dangl and Jones, 2001). Thus this structure 

closely resembles the union of R proteins from the second and third class. The rice Xa21 

was the first gene of this class to be cloned (Song et al., 1995). The fifth and last class of 

R gene was the most recently uncovered and consisted of only two paralog genes, 

RPW8.1 and RPW8.2 (Xiao et al., 2001). These two genes encodes for relatively short 

proteins consisting of a transmembrane domain and a putative cytoplasmatic CC domain 

(Xiao et al., 2001). 

1.2.3 The hypersensitive response 

The R mediated recognition of avirulent pathogens initiates a signal transduction cascade 

that culminates in the activation of the plant defence system (Staskawicz et al., 1995; 

Yang et al., 1997). This response is often accompanied by a rapid cell death in and 

around the initial infection side, a reaction known in plants as local hypersensitive 

response (ER) (Dangi et al., 1996). This defence mechanism is associated with restricted 

pathogen growth and represents a form of programmed cell death (Heath, 2000; Loake, 

2001). In cells surrounding the HR area, a number of additional local responses, such as 

high accumulation of phenolic compounds and cell-wall reinforcements, also occur in 

order to confine the pathogen and protect the plant (Dangi et al., 1996). Production of 

pathogenesis-related (PR) proteins, with antimicrobial functions, is also triggered (Ward 

et al., 1991; Hammond-Kosack and Jones, 1996). 
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1.3 Systemic Acquired Resistance and SA-dependent disease resistance pathway 

1.3.1 Systemic Acquired Resistance 

Following an incompatible interaction is the establishment of immunity to secondary 

infections in systemic tissues, a mechanism designated as ystemic acquired resistance 

(SAR) (Uknes et al., 1992). This systemic response conveys long-lasting protection 

against a broad spectrum of normally virulent pathogens (Ryals et al., 1996). Associated 

with the onset of SAR are the systemic production of PR proteins and the establishment 

of disease resistance (Ward et al., 1991; Ryals et al., 1996). Though SAR has been 

extensively investigated, the translocation factor by which SAR is induced from the 

infection site to the rest of the plant still remains unknown. 

1.3.2 The function of salicylic acid 

Salicylic acid (SA) undoubtedly plays an essential role in the onset of SAR (Malamy et 

al,, 1990; Metraux et al., 1990); however, a number of independent studies have clarified 

that SA is not the messenger factor that moves throughout the phloem (Vemooij et al., 

1994; Ryals et al., 1995). The precise function of SA during the establishment of SAR in 

distal tissue is still unclear. Currently, the accumulating data supports the theory that SA 

functions at multiple nodes in the defence signalling network, most likely by acting as a 

signal amplifier (Shirasu et al., 1997). Consistent with this hypothesis, SA increases in 

plants after infection in both local and systemic tissues, and it is also required for the 

expression of PR genes (Malamy et al., 1990; Metraux et al., 1990; Ryals et al., 1996). 

In addition, application of SA or its analogues, 2,6-dichloroisonicotinic acid (INA) and 

benzothiadiazole (BTH), induces broad spectrum disease resistance in plants (Uknes et 

al., 1992; Gorlach et al., 1996). 

1.3.3 Constitutive disease resistance mutants 

The isolation of loss-of-function mutants, mainly in Arabidopsis, exhibiting 

abnormalities in disease resistance has improved the understanding of the SAR 

transduction network and the role of SA (Glazebrook, 2001; Lorrain et al., 2003; 

6 



Hammond and Parker, 2003). A large number of mutants that accumulate high levels of 

SA and exhibit constitutive disease resistance have been isolated and characterise to date 

(Lorrain et al., 2003); thus, only the most relevant disease resistant mutants and those 

specifically employed in this research will be described here. 

Among the initial mutants isolated, cprl (constitutive of pathogen related proteins) 

plants exhibited dwarf phenotype, constitutive expression of several SA induced defence 

genes and enhanced disease resistance (Bowling et al., 1994). The cprl nahG double 

mutant did not accumulate SA nor showed cprl phenotype, indicating that CPR1 acted 

upstream of SA in the SAR signalling pathway (Bowling et al., 1994). The CPR] gene 

has not been identified yet. The cpr6 mutant line also exhibited a similar SA-dependent 

phenotype: constitutive expression of SA-induced defence genes and enhanced disease 

resistance (Clake et al,, 1998). In addition to enhanced disease resistance, cpr5, cpr20, 

cpr2l and cpr22 mutant plants also showed spontaneous necrotic lesions (Bowling et al., 

1997; Silva et al., 1999; Yoshioka et al., 2001). 

The isdi (lesion  simulating disease response) mutant leaves also exhibited spontaneous 

necrotic lesions, which resembled those resulting from disease, but occurred in the 

absence of pathogen infection (Dietrich et al., 1994). The LSDJ gene encodes for a zinc-

finger-protein suggesting that LSD 1 could regulate transcription in response to signals 

generated by pathogen-infected cells undergoing HR (Dietrich et al., 1997). Similarly to 

cpr mutants, isdi plants constitutively expressed SA-responsive defence genes and 

showed enhanced disease resistance; however isdi mutants did not reveal morphological 

abnormalities (Dietrich et al., 1994; 1997). The majority of mutants exhibiting 

constitutively active SA defence pathway and enhanced disease resistance also 

developed spontaneous necrotic lesions (Lorrain et al., 2003). Constitutive cell death 

was therefore suggested to induce SA production and, subsequentially, defence gene 

expression (Greenberg et al., 1994; Lorrain et al., 2003) 

Constitutive disease resistance could also occur in the absence of morphological 

phenotype and extensive HR cell death in two mutants, dndl and cirl (Yu et al., 1998; 

Murray et al., 2002). The DNDJ gene encoded for a cyclic nucleotide-gated ion channel, 
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indicating the involvement of ion fluxes in defence activation or in pathogen-induced 

cell death (dough et al., 2000). Furthermore, a number of mutant lines, edri, pmrl, 

pmr2, pmr3 and pmr4, have been isolated that exhibited increased disease resistance in 

the absence of constitutive expression of defence genes and elevated SA levels (Frye and 

Innes, 1998; Vogel and Somerville, 2000). Therefore, disease resistance observed in 

these mutant lines is not due to the constitutive activation of defence responses but to the 

activation of an enhanced defence mechanism in response to pathogen attack (Frye and 

limes, 1998; Vogel and Somerville, 2000). In summary, the isolation of several 

enhanced disease resistance mutant lines has allowed the dissection and a better 

understanding of plant defence pathways (Yim and Loake, 2002; Hammond and Parker, 

2003). 

1.3.4 SA deficient mutants and transgenic lines 

The conclusive proof for the SA requirement to establish SAR came from the 

investigation of mutants incapable of responding to SA. The Arabidopsis and tobacco 

transgenic nahG plants, expressing a bacterial salicylate hydroxylase which converted 

SA into catechol, accumulated greatly reduced amount of SA, did not express PR genes 

or display SAR in response to SAR-inducing infections (Gafthey et al., 1993; Delaney et 

al., 1994; Friedrich et al., 1995). Furthermore, nahG plants were strikingly more 

susceptible to various pathogens, confirming the requirement for SA accumulation to 

mount plant defence responses (Delaney et al., 1994; Friedrich et al., 1995). Wild-type 

plants treated with catechol, the degradation product to which SA was converted in 

nahG transgenic lines, showed the loss of non-host resistance against Pseudomonas 

syringae pvphaseolicola (VanWees and Glazebrook, 2003). However, race specific and 

R mediated defence responses did not appear to be affected by catechol accumulation 

(VanWees and Glazebrook, 2003). 

Several independent projects aimed to isolate loss-of-function mutants deficient in or 

insensitive to SA (Cao et al., 1994; Delaney et al., 1995; Shah et al., 1997; Nawrath and 

Metraux, 1999). The allelic mutants nonexpresser of PR genes (nprl), noninducible 

immunity (nimi) and salicylic acid insensitive (sail) accumulated SA normally after 
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pathogen recognition, but were non-responsive to SA (Cao et al., 1994; Delaney et al., 

1995; Shah et al., 1997). In addition, nprl plants exhibited reduced disease resistance 

and loss of PR] expression following  SA treatment (Cao et al., 1994). The NPRJ gene 

encoded an arikyrin-repeat protein whose interaction with the transcription factor TGA2 

was essential to activate PR] expression and disease resistance (Fan and Dong, 2002). 

NPR1 was normally present as an oligomeric cytosolic aggregate and, upon SAR 

induction, the change in cellular reduction potential induced NPR1 reduction into a 

monomeric form that could be transferred to the nucleus (Mou et al., 2003). 

Two SA induction deficient (sidi and sid2) Arabidopsis mutants also showed decreased 

expression of defence genes and increased susceptibility to several pathogens (Nawrath 

and Metraux, 1999). EDS5/SID1 encoded a MATE (multidrug and toxin extrusion) 

transporter protein that was induced by pathogen recognition and SA treatment, 

suggesting that EDS5 acts in a positive feedback regulation loop (Nawrath et al., 2002). 

SID2/EDS16/ICS1 encoded an isochorismate synthase that was induced upon pathogen 

recognition in order to synthesise SA, which in turn triggered local defence and SAR 

(Wildermuth et al., 2001). 

1.4 JA- and ET-dependent disease resistance pathways and Induced Systemic 

Resistance 

Two additional signalling molecules, jasmonic acid (JA) and ethylene (ET) play 

important roles in the induction of disease resistance against several pathogens (Loake 

and Nurmberg, 2003; Solano and Ecker, 1998). Mutants exhibiting abnormal response to 

JA and ET were precious genetic tools to dissect disease resistance pathways (Stepanova 

and Ecker, 2000; Berger, 2002; Devoto and Turner, 2003). 

1.4.1 Jasmonic acid-dependent disease resistance pathway 

JA and its volatile counterpart methyl jasmonate (Me-JA) are signal molecules 

conserved throughout higher plants and affect many different processes (Creelman and 



Mullet, 1997). JA and Me-JA are involved in the response to wounding, resistance to 

insects and a plethora of pathogens and are also required for plant development 

(Creelman and Mullet, 1997; Leon et al., 2001). Proteins encoded by JA-responsive 

genes include antimicrobial peptides, phytoalexin biosynthetic enzymes, storage proteins, 

stress protectants and wound-induced proteinase inhibitors (Loake and Nurmberg, 2003). 

Both JA accumulation and plant defensin (PDFJ.2) expression occurred in Arabidopsis 

plants 3 days after infection with Alternaria brassicicola, a necrotrophic fungal 

pathogen (Penninckx et al., 1996; Thomma et al., 1999a). Pre-treatment with JA, but not 

with SA or its chemical analogue INA, triggered PDF1.2 accumulation and disease 

resistance against A. brassicicola in wild-type plants, but not in mutants insensitive to 

JA or ET (Penninckx et al., 1996). The Arabidopsis fad3-2 fad7-2 fad8 triple mutant, 

deficient in JA production, was extremely susceptible to the necrotrophic fungus 

Pythium mastophorum (Vijayan et al., 1998). However, prior application of Me-JA 

restored fad3-2fad7-2fad8 resistance to P. mastophorum, consistent with the hypothesis 

that jasmonates were crucial in mediating disease resistance (Vijayan et al., 1998). In 

addition, the esal (enhanced susceptibility to A. brassicicola) mutant was more 

susceptible than wild-type plants to several necrotrophic fungi, but not to biotrophic 

pathogens (Tierens et al., 2002). The esal enhanced susceptibility correlated with the 

delayed accumulation of JA and PDFI.2 expression (Tierens et al., 2002). In contrast, 

cevi (constitutive expression of VSPJ) mutant, which constitutively accumulated high 

levels of JA and PDF1.2 transcripts, exhibited enhanced disease resistance to three 

Erysiphe isolates (Ellis and Turner, 2001). Altogether, these data confirmed the presence 

of a JA-dependent SA-independent disease resistance pathway. 

Interestingly, separate JA- and SA- dependent defence response pathways in plants 

conveyed resistance against different pathogens and many studies have suggested an 

antagonistic correlation between these two separate signalling pathways (Reymond and 

Farmer, 1998; Kunkel and Brooks, 2002; Li et al., 2004). For example, PAL 

(henylalanine ammonia-lyase) overexpression in transgenic plants enhanced resistance 

against larvae of Heliothis virescens but reduced SAR (Felton et al., 1999). In contrast, 
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the silencing of PAL induced resistance to necrotrophic pathogens but decreased SAR 

(Felton et al., 1999). 

Microanay results also showed that SA and JA induced the expression of different sets 

of genes (Glazebrook et al., 2003); in addition, SA treatment inhibited the expression of 

many JA-responsive genes, whereas JA treatment inhibited the expression of several 

SA-responsive genes (Schenk et al., 2000). In this context, WRKY70 has been recently 

identified as a concurrent activator of SA-induced genes and repressor of JA-responsive 

genes, suggesting that WRKY70 is a regulator node of SA and JA antagonistic pathways 

(Li et al., 2004). However, a number of genes are induced by either JA or SA (Schenk et 

al., 2000; Glazebrook et al., 2003). It is also worth noting that some genes are 

synergistically induced in response to JA and SA (Schenk et al., 2000; Glazebrook et al., 

2003). Therefore, the control of transcription cued by these two phytohormones appears 

predominantly, but not exclusively, antagonistic (Schenk et al., 2000; Glazebrook et al., 

2003; Li et al., 2004). 

1. 4.2 Ethylene-dependent disease resistance pathway 

ET is a simple gas (C2H4) that affects many stages of plant growth and development 

including: germination, senescence, abscission, flowering and response to various 

stresses (Solano and Ecker, 1998). ET production often occurs during plant-pathogen 

interactions but its functions in disease resistance or susceptibility are currently 

uncertain and may depend on the pathogen species involved (Thomma et al., 1999b; 

Berrocal-Lobo et al., 2002). 

Elucidation of ET perception and signal transduction relied on the isolation and 

characterisation of mutants that exhibited defective ET responses (Stepanova and Ecker, 

2000; Guo and Ecker, 2004). ET perception is mediated by several receptors consisting 

of integral membrane proteins; among them ETR1, ETR2 (ethylene receptor), EIN4 

(ethylene insensitive), ERS 1 and ERS2 (ethylene response sensor) (Hua and Meyerowitz, 

1998). Signal transduction is accomplished via a protein kinase cascade regulated by the 

MAP kinase CTR1 (constitutive triple response) (Keiber et al., 1993). Finally, signal 
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transduction triggers the expression of transcription factors such as ERF I (ethylene 

response factor) and other EREBPs(ethylene response element binding protein) which 

subsequently promote transcription of defence-related genes (Solano et al., 1998; 

Lorenzo et al., 2003). 

In order to study the onset of disease resistance in plants deficient in the ET signalling 

pathway, the thylene insensitive (ein2) Arabidopsis mutant was analysed (Alonso et al., 

1999). Infection with A. brassicicola induced accumulation of PDF1.2 and other 

defence genes in wild-type plants, but the induction of these genes was abolished in ein2 

mutants (Penninckx et al., 1996). Furthermore, ein2 plants were markedly more 

susceptible to Botrytis cinerea than wild-type plants; however, challenge of ein2 mutants 

with P. parasitica or A. brassicicola failed to promote fungal infection (Thomma et al., 

1999b). The JA insensitive coil mutant also exhibited enhanced disease susceptibility to 

B. cinerea, suggesting that both JA and ET pathways are required to convey resistance 

to this necrotrophic pathogen (Penninckx et al., 1998). In addition, transcription of 

PDF1.2 was concurrently activated by JA and ET signalling upon pathogen infection 

(Penninckx et al., 1998). 

The current knowledge of the ET defence response pathway suggests that this 

phytohormone plays an important role in the establishment of disease resistance to some 

but not all types of pathogens (Guo and Ecker, 2004). Furthermore, several independent 

studies have confirmed that ET can trigger disease resistance synergistically or 

antagonistically to SA and/or JA depending on specific responses to different pathogens 

(Penninckx et al., 1998; O'Donnell et al., 1996; Berrocal-Lobo et al., 2002; Lorenzo et 

al., 2003). In this context, both ET and JA were required to trigger induced ystemic 

resistance (TSR) (Pieterse et all., 1998). 

1.4.2 Induced Systemic Resistance 

In addition to the SA-dependent SAR, a novel systemic defence mechanism has been 

recently reported. Treatment of Arabidopsis plants with the nonpathogenic root-

colonizing bacteria Pseudomonas fluorescens conferred systemic resistance against 
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virulent P. syringae; this novel defence mechanism was designated as ISR (Pieterse et 

al., 1998). Importantly, ISR required intact JA, ET and NPR1 signalling pathways, 

whereas it was independent of SA (Pieterse et al., 1998). SAR could also convey 

resistance against P. syringae and the simultaneous induction of SAR and ISR exhibited 

an additive effect on P. syringae resistance (Uknes et al., 1992; VanWees et al., 2000). 

These results suggested that SAR and ISR pathways were established through parallel 

signalling cascades that did not exhibit significant cross-talk. 

1.5 R gene mediated disease resistance 

To better understand R-mediated defence signalling, many projects aimed to identify 

mutants disrupted in defence signalling. Several "enhanced disease susceptibility" 

mutants were isolated and a number of genes that are essential for full expression of R 

gene-mediated resistance were identified (Glazebrook et al., 1996; Parker et al., 1996; 

Century et al., 1997; Muskett et al., 2002; Tomero et al., 2002; Tor et al., 2002). 

1.5.1 The role of EDSJ and NDRJ 

The characterization of edsl and ndrl mutants suggested that at least two distinct R-

mediated resistance pathways existed in plants (Parker et al., 1996; Glazebrook et al., 

1996; Century et al., 1997). EDS1 encoded for a protein homologous to eukaryotic 

lipases, although the putative lipase activity has not been confirmed either in vitro or in 

vivo (Falk et al., 1999). EDS1 was required to establish the resistance signalling cascade 

induced by TIR-NBS-LRR genes (Feys et al., 2001). In contrast, NDRJ encoded a 

putative membrane-associated protein of unknown function which was essential to 

establish resistance triggered by most, but not all, CC-NBS-LRR genes (Aarts at el., 

1998). 

Many TIR-NBS-LRR genes, such as RPP1, RPP4, RPP5, RPPJO, RPP14 and RPS4, 

were proven to convey resistance in an EDS 1-dependent but NDR1-independent manner 

(Dodds and Schwechheimer, 2002). In addition, the RPW8 genes that have been recently 
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identified also convey resistance independently to NDR1 but in an EDS1 dependent 

manner (Xiao et al., 2001). The two tandem RPW8 genes encoded for short R proteins 

that exhibited high similarity to CC domain of CC-NBS-LRR proteins, lacked both the 

NBS and LRR domains and were therefore classified in a separate R gene group (Dangl 

and Jones, 2001; Xiao et al., 2001). Furthermore, none of the characterised CC-NBS-

LRR genes required a functional EDS1 pathway to establish resistance (Dodds and 

Schwechheimer, 2002). 

Several CC-NBS-LRR genes required a functional NDR1 protein to properly establish 

disease resistance: RPM], PRS2 and RPS5 represent some examples (Dodds and 

Schwechheimer, 2002). Thus, EDS1 and NDR1 appeared to specify two distinct 

resistance signalling pathways that were activated by classes of structurally different R 

proteins (Aarts et al., 1998). However, at least two genes, RPP8 and RPP13, encoding 

for proteins with CC.-NBS-LRR structures triggered resistance independently of NDRl 

(McDowell et al., 2000; Bittner-Eddy and Beynon, 2001). Furthermore, RPP8 and 

RPP13 are also EDS1 independent, hence suggesting the existence of at least one 

additional pathway which establishes R gene mediated resistance independently of 

EDS1 and NDR1. The analysis of RPP7-mediated disease resistance showed that the 

function of NDR1 and EDS1 are partially redundant, but confirmed the existence of at 

least one additional pathway (McDowell et al., 2000; Bittner-Eddy and Beynon, 2001). 

1.5.2 The role of RARJ and SGT]B 

Additional downstream components of the R mediated resistance pathway have been 

recently identified. In barley, the RAR] gene was initially isolated as necessary for the 

specific M1a]2 mediated resistance; however, several additional Mia and powdery 

mildew R genes also triggered resistance dependent on RAR1 in barley (Freialdenhoven 

et al., 1994; Shirasu et al., 1999). The Arabidopsis homolog of RARI was necessary for 

the establishment of resistance conveyed by several R genes that belonged to both CNL 

and TNL subgroups (Muskett et al., 2002; Tor et al., 2002; Tornero et al., 2002). 

Therefore the RAR1 regulation of R-mediated resistance was not based on the structure 

specificity of the cognate R protein. 
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RAR1 also differed from EDS 1 and NDR1 in the fact that it possessed homologues not 

only among several plant species, but also amongst other eukaryotic organisms (Shirasu 

et al., 1999). Plant RARJ genes encoded a protein with two conserved zinc-finger motifs, 

CHORD-I and CHORD-TI (Shirasu et al., 1999; Muskett et al., 2002). However RAR1 

lacked a C-terminal domain, designated as CS, which was present in metazoan RARJ 

homologues (Muskett et al., 2002; Tornero et al., 2002). Nevertheless, the conserved CS 

motif was present in a different eukaryotic protein, SGT1, suggesting an evolutionary 

domain division event in eukaryotic organisms (Shirasu et al., 1999; Austin et al., 2002). 

Indeed, co-immunoprecipitation experiments in Arab idopsis and barley confirmed that 

RAR1 and SGT1 proteins interacted both in vitro and in vivo (Azevedo et al., 2002). 

Similarly to RAR1, SGT1 was necessary to establish resistance mediated by some CC-

NBS-LRR and TIR-NBS-LRR genes, suggesting that SGT1 did not regulate R-mediated 

resistance based on structure specificity of R proteins (Tor et al., 2002). It is noteworthy 

that a number of R genes, such as RPP4, RPP5 and RPP21, exhibited a requirement for 

both RAR1 and SGT1; therefore, RAR1 and SGT1 pathways did not appear mutually 

antagonistic (Dodds and Schwechheimer, 2002). As previously described, RPP8 and 

RRP13 conveyed resistance independently of EDS1 and NDR1 (McDowell et al., 2000; 

Bittner-Eddy and Beynon, 2001). Furthermore, RPP8 required neither RAR1 nor SGT1. 

The requirement of RAR1 and SGT1 for RPP13-mediated resistance is still unknown 

(Dodds and Schwechheimer, 2002); however, these data confirmed the existence of at 

least one unidentified R-mediated resistance signalling pathway. 

SGT1 was originally isolated and characterized in yeast, where it interacts with SKIP1, 

which was identified as a component of the SKP1/Cullin!F-box protein (SCF) ubiquitin 

ligase complex (Kitagawa et al., 1999). The GST1/SKP1 interaction was well conserved 

in plants suggesting a role for ubiquitination in the plant resistance response (Azevedo et 

al., 2002). In this context, evidence that RPM1 protein was rapidly degraded after 

pathogen infection in Arabidopsis cells underlined the potential importance of protein 

degradation in plant resistance (Boyes et al., 1998). In addition, AvrRpt2 recognition 

caused RIN4 (RPM 1 interacting protein) degradation during the activation of RPS2 
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mediated resistance pathway (Mackey et al., 2002; Axtell and Staskawicz, 2003). Thus, 

it is not surprising that proteolysis complexes are, directly or indirectly, involved in plant 

defence response. A recent RNA silencing study in tomato plants confirmed that SGT1 

was required to convey R mediated disease resistance (Peart et al., 2002). Surprisingly, 

SOT 1 was also required to establish non-host disease resistance: hence it was suggested 

that R mediated and non-host resistance might involve similar proteolytic defence 

mechanisms (Peart et al., 2002). 

1. 5.3 The role of HSP9O 

Recently, a yeast two-hybrid screen identified a cytosolic beat shock protein 90 (HSP90) 

as an interacting protein of RAR1 (Takahashi et al., 2003). Co-immunoprecipitation 

experiments confirmed that HSP90 was also associated with SGT1 in vivo (Takahashi et 

al., 2003). The establishment of both RPM]- and RPS2-mediated resistances in 

Arabidopsis required functional HPS90 protein and were suggested to occur via direct 

interaction of HSP90 with RAR1 and SGT1 (Takahashi et al., 2003). In addition, a 

virus-induced gene silencing investigation in tobacco plants revealed that HSP90 

silencing resulted in the loss of disease resistance responses mediated by several R genes 

including Rx, N and Pto (Lu et al., 2003). Altogether, these results suggested that HSP90 

might act in a multi-protein complex as a chaperonin, reflecting the typical role of HSP 

protein. 
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1.6 Abiotic stress tolerance pathways in plants 

1.6.1 General context 

As previously described, plants cannot move to escape environmental challenges; 

therefore plants are constantly exposed to a variety of both biotic and abiotic stresses. 

Among the latter, drought, salinity and extreme temperatures represent the most 

devastating challenges since they can reduce crop yield by more than 50% (Wang et al., 

2003). An example of the devastating effect of abiotic stresses was the heat-wave that in 

summer of 2003 severely disrupted agriculture, with equally devastating effects in 

developing and developed countries (Debono et al., 2004). Therefore, understanding the 

plant perception of abiotic stresses and the signalling pathways that trigger an adequate 

adaptive response is crucial to develop new methodologies to improve crop tolerance to 

abiotic stresses. 

1.6.2 Perception ofabiotic stresses 

Generally, the first step of all abiotic adaptive responses is to perceive the stress, which, 

in turn, induces the generation of a second messenger (Xiong et al., 2002). These 

molecules, often by modulating intracellular calcium levels, can regulate the 

transcription of several specific classes of genes (Knight and Knight, 2001). 

Subsequently, the products of these genes can lead to the induction of "early" 

physiological adaptive responses; alternatively, they can trigger the expression of 

transcription factors and/or phytohormone such as abscisic acid (ABA) (Zhu, 2001). In 

turn, these regulator molecules may establish a second set of "late" adaptive responses 

that complements the early-induced tolerance mechanisms. 

Tolerance responses have usually been dissected as linear physiological pathways in 

isolation from other stresses to simplify laboratory data evaluation. Increasing molecular 

and genetic data are revealing an unexpected extent of cross-talk and overlap between 

these individual pathways that are nowadays regarded as components of a more 

sophisticated network of signals (Chinnusamy et al., 2004). 
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It is well established that several abiotic stress tolerance pathways share common 

elements; this is consistent with the fact that plants cannot perceive the difference 

between some abiotic stresses. For example, drought and freezing conditions are 

recognized as an equivalent dehydration stress; hence, plants are required to activate an 

analogous dehydration protection response to induce freezing and drought tolerance 

(Wang et al., 2003). However, drought and freezing stresses also induce distinct 

responses that are specific for each distinct abiotic condition. In general, all abiotic 

stresses trigger antioxidant production in response to oxidative damages. Plants therefore 

need to activate a similar antioxidant protection system to overcome the oxidative 

damage caused by many different stresses (Xiong et al., 2002). 

Despite the extensive similarities between many abiotic stress pathways, plants need to 

perceive the different features of each singular stress to induce the most appropriate and 

specific adaptive response. As previously described, damage caused by oxidative stress 

is common to several abiotic stresses, whereas others (such as disruption of ion 

distribution in salinity stress) are more specific (Xiong et al., 2002; Zhu, 2001). 

Therefore, plants need to activate a combination of general and specific pathways in 

order to trigger the most appropriate adaptive response. The complexity of this multiple 

response is further increased by the fact that a limited number of signalling components 

can function as a common "node" (Chinnusamy et al., 2004). Indeed, elements such as 

MAP kinases can be activated by more than one signalling pathway, cooperate with 

different "co-factors" and induce separate physiological responses (Ludwig et al., 2004). 

1.6.3 The role of calcium in stress signalling cascades 

Considering the complexity and extent of the stress signal network, a number of 

different receptor classes are assumed (Xiong et al., 2002). However, plant receptors 

able to perceive any initial abiotic stress have not been confirmed yet. Cold, drought and 

salinity stresses quickly induce an increase in intracellular calcium concentration, 

suggesting that a yet unidentified membrane system functions as a stress receptor and 

subsequentially induces C2 accumulation (Knight and Knight, 2000; Pei et al., 2000). 
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A transient increase in calcium concentration subsequently activates downstream 

signalling pathways via Ca2 -binding proteins (Knight and Knight, 2000). Specifically, 

CDPKs (ça2tdependent  protein kinases) are thought to play a major role in abiotic 

stress tolerance pathways (Ludwig et al., 2004). This class of protein kinase contains a 

calmodulin-like domain with 4 conserved EF motifs that can directly bind Ca  2+  (Cheng 

et al., 2002). For example, the Arabidopsis genome encodes at least 34 CDPKs (TAIR, 

2000), several of which were confirmed to be activated by different abiotic stresses 

(Xiong et al., 2002). These data suggested that a transient increase of calcium could 

activate a kinase cascade resulting in enhanced stress tolerance. Consistent with this 

hypothesis, rice over-expressing CDPK7 exhibited enhanced cold, drought and salt 

tolerance (Saijo et al., 2000). 

An additional class of proteins induced by abiotic stresses and regulated by direct Ca2 -

binding are CBLs (calcineurin B-like)  (Luan et al., 2002). Transgenic Arabidopsis plants 

overexpressing CBL1 were more salt and drought tolerant, whereas they showed 

enhanced freezing susceptibility (Cheong et al., 2003; Albrecht et al., 2003). In contrast, 

cbll loss-of-function mutants showed enhanced freezing resistance but less drought and 

salt tolerance (Cheong et al., 2003). Hence, the Ca2tregulated  CBL1 was hypothesised 

to function as a positive regulator of drought and salt responses and a negative regulator 

of the cold tolerance pathway (Cheong et al., 2003). These data were consistent with the 

hypothesis that the same signal molecule (Ca  2+  acting as second messenger) could 

specifically up- or down-regulate individual adaptive responses against different abiotic 

stresses (Knight and Knight, 2000). 

1.6.4 The role of abscisic acid in stress response signalling 

It has been long known that plants undergoing abiotic stresses may produce increased 

levels of ABA; indeed, ABA was the first phytohormone identified to play a major role 

in abiotic stress signalling pathways (Rikin et al., 1975; Chen et al., 1983). ABA 

treatment induced the expression of several dehydration- and cold-responsive genes and 

may enhance plant tolerance against abiotic stresses (Thomashow, 1999; Shinozaki and 

Yamaguchi-Shinozaki, 2000; Zhu, 2002). The ABA-insensitive abil (gscisic acid 
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insensitive) mutant exhibited drought, salt and osmotic hypersensitivity (Werner and 

Finkelstein, 1995). Nevertheless, the response to several abiotic stress genes was not 

regulated by ABA and the existence of both ABA-dependent and ABA-independent 

signal transduction pathways was therefore suggested (Thomashow, 1999; Zhu, 2001; 

Xiong et al., 2002). 

1.6.5 ABA dependent stress response pathways 

Several ABA-responsive genes have been isolated and the promoter analysis of these 

genes identified an element that could induce transcription upon ABA binding; this 

regulatory element was designated ABRE (A-esponsive element) (Thomashow, 

1999; Shinozaki Yamaguchi-Shinozaki, 2000). The RD (dehydration to responsive) 

genes were amongst the best characterised genes that contained ABRE in their 

promoters (Taji et al., 1999). For example, the RD29B promoter contains two ABRE 

elements that were required to activate ABA-induced gene expression. In addition, the 

drought induced expression of RD29B was blocked in abi mutants, confirming the 

dependence of RD29B expression on ABA (Yamaguchi-Shinozaki and Shinozaki, 1994). 

Several basic leucine zipper (bZIP) transcription factors that bound ABRE (ABA-

lesponsive element binding protein) elements have been recently isolated (Hobo et al., 

1999; Finkelstein et al., 2000; Uno et al., 2000). Two of them, named AREBJ and 

AREB2, were highly expressed upon drought, salinity and ABA treatments and, in turn, 

ABRE 1 and ABRE2 activated the expression of several ABRE-containing genes (Uno et 

al., 2000). Transgenic Arabidopsis lines overexpressing ABF4/AREB2 have been 

recently characterised and 35S: :ABF4 plants exhibited enhanced ABA sensitivity and 

constitutive expression of several stress-responsive genes that contained ABRE elements 

(Kang et al., 2002). These transgenic plants also showed a reduced transpiration rate and 

enhanced drought tolerance; in contrast, they were hypersensitive to moderate salt and 

sugar concentrations but not to osmotic stress (Kang et al., 2002). These results argued 
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that the binding of bZIPs to ABRE elements can co-ordinately orchestrate the activation 

of several ABA-dependent stress responses. 

Molecular studies have uncovered the existence of at least an additional ABA-dependent 

abiotic stress signalling pathway, which specifically required the biosynthesis of a novel 

protein to activate expression of ABA-responsive genes (Thomashow, 1999; Shinozaki 

and Yamaguchi-Shinozaki, 2000; Xiong et al., 2002). Drought-responsive RD22 

transcription was mediated by ABA but blocked by cycloheximide, an inhibitor of 

protein biosynthesis (Yamaguchi-Shinozaki and Shinozaki, 1993). 

1.6.6 ABA-independent stress response pathway 

Independent analyses of the drought-responsive RD29A and the cold-inducible COR15 

promoter uncovered the presence of a motif termed dehydradation-responsive 

lement/c-repeat (DRE/CRT) Yamaguchi-Shinozaki and Shinozaki, 1994; Baker et al., 

1994). Activation of RD29A and COR15 was ABA-independent, hence defining a new 

stress signalling pathway (Yamaguchi-Shinozaki and Shinozaki, 1994; Baker et al., 

1994). Several transcription factors specifically recognized DRE/CRT elements and 

induced gene expression (Stockinger et al., 1997; Liu et al., 1998). These transcription 

factors were grouped in two families; the CBF/DREB1 family, composed by 

CBF1/DREB1B, CBF2iDRE1C and CBF31DREB1A and the DREB2 family (Gilmour 

et al., 1998; Liu et al., 1998; Shinwari et al., 1998) 

CBF/DREB 1 proteins possessed a DNA-binding AP2 domain and induced stress-

responsive gene expression by specific binding of the DRE/CRT element (Stockinger et 

al., 1997; Liu et al., 1998; Shinwari et al., 1998). All CBF/DREB] genes were 

specifically induced by low temperature conditions but not by drought stress. In addition, 

Arabidopsis plants overexpressing CBFJ/DREB1B or CBF3/DREBJA exhibited 

constitutive induction of cold-responsive genes and enhanced freezing tolerance (Jaglo-

Ottosen et al., 1998; Liu et al., 1998; Kasuga et al., 1999). These results therefore 

confirmed the presence of an ABA-independent low temperature responsive signalling 

pathway mediated by CBF/DREB 1 transcription factors. 
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DREB2A and DREB2B, two additional proteins that specifically recognized DRE/CRT 

elements, were also identified (Liu et al., 1998). In contrast to DREBI gene regulation, 

DREB2 expression was induced by ABA treatment, dehydration and salt stress but not 

by cold condition (Liu et al., 1998; Nakashima et al., 2000). Transgenic Arabidopsis 

plants overexpressing DREB2A weakly induced stress-response genes but failed to show 

enhanced drought or freezing tolerance, indicating that DREB2 activation was 

established in a post-transcriptional manner (Liu et al., 1998). In conclusion, two distinct 

protein families, CBF/DREBJ and DREB2, act as transcription factors in two 

independent signalling pathways (cold and dehydration stress pathway respectively) (Liu 

et al., 1998; Shinozaki and Yamaguchi-Shinozaki, 2000). Recently, rice homologues of 

both DREBI and DREB2 genes have been isolated and the DREBIA rice gene was fully 

functional in Arabidopsis plants, suggesting that the CBFI DREBI stress pathway was 

well-conserved amongst plant species (Dubouzet et al., 2003). 
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2) Experimental Procedures 

2.1 Growth of Arabidopsis thaliana and plant treatments 

Arabidopsis thaliana seeds of Columbia (Co1-0) and Landsberg erecta (Ler) accessions were used. 

Most seeds of Arabidopsis transgenic plants and mutant lines were obtained from the Nottingham 

Arabidopsis Stock Centre (NASC) (Table 2.1). 

Table 2.1 Arabidopsis accessions, mutant and transgenic lines. 

Line Accession Phenotype I Reference Source 

C0I-0 Col-0 wild-type NASC 

Ler Ler wild-type NASC 

abil - I Ler ABA insensitive Koornneef et al., 1984 NASC 

Loake, University of 
cirl Col-0 Constitutive SAR Murray et al., 2002 

Edinburgh 

Turner, University of 
coil - I Col-0 Jasmonate insensitive Feys et at., 1994 

East Anglia 

cprl -1 Col-0 Constitutive SAR Bowling et al., 1994 Dong, Duke University 

Impaired in R-mediated Parker, Max Planck 
edsl -2 Ler 

signalling 
Feys et at., 2001 

Institute 

e1n2-I Col-0 Ethylene insensitive Guzman and Ecker, 1990 NASC 

Impaired in R-mediated Shirasu, John Innes 
hsp 90-I Col-O 

signalling 
Takahashi et at., 2003 

Centre 

nahG Col-0 
Salicylate hydroxylase 

Lawton et at., 1995 Syngenta, USA 
transgene  

Dong, 
nprl -1 Col-0 SAR insensitive Cao et al., 1994 

Duke University 

Impaired in R-mediated Staskawicz, Berkeley 
ndrl -2 Col-0 

signalling 

Aartsetal., 1998 
University 

Impaired in R-mediated Parker, Max Planck 
rarl-10 Ler 

signalling 
Musket et al., 2002 

Institute 

sgtl -3 Col-0 
Impaired in R-mediated 

Tor et at., 2002 Holub, Warwick HRI 
signalling I 

Seeds were placed on soil and allowed to vernalise for 48 hours at 4°C after which they were 

transferred into growth rooms. Plants were grown under 10-hours of light at 22°C and 14-hours of 

dark at 18°C. For aseptic growth, seeds were sterilised with commercial bleach for 20 minutes, 

23 



washed 4 times in distilled water and maintained 4 days in the dark at 4°C to improve germination 

uniformity. Plants were subsequently transferred to MS plates containing MS basal salts 

supplemented with 1% (w/v) sucrose and 1% (w/v) agar. All chemicals employed were purchased 

from Sigma-Aldrich UK or unless stated otherwise. Petri dishes were transferred to a growth 

chamber with 16-hours of light at 22°C and 8-hours of dark at 18°C. 

A 20mM methyl jasmonate (Me-JA) stock solution was prepared in 100% (v/v) ethanol. A 1:100 

dilution, containing 0.01% (v/v) Silwet (Union Carbide, UK), was used to paint plant leaves which 

were harvested after 48 hours for RNA extraction. To activate SAR, wild-type plants were sprayed 

with a 300 1iM BTH solution containing 0.01% Silwet (Syngenta, CA, USA) (Gorlach et al., 1996). 

Leaves were collected 5 days after treatment. 

TA::ADR1 and TA:: transgenic lines were treated with dexamethasone (DEX) as described by 

Grant et al. (2003). Briefly, a 1mM DEX stock solution was prepared in ethanol and a 1:1000 

dilution, containing 0.01% (v/v) Silwet, was used to homogenously spray plant leaves. 

Seeds of activation tagged mutant lines were sown in flats and selected by spraying twice a 

150mg/I BASTA (Agrevo, Germany) solution; one week after germination and four days later. 

Resistant plants were visually identified one week after treatment. 

2.].] Generation ofadrl double mutants 

Genetic crosses were undertaken using pollen from homozygous adri plants to fertilise unopened 

flowers of abil (Koornneef et al. 1984), ndrl (Century et al. 1997) and edsi (Parker et al. 1996) 

plants. Successful Fl crosses were confirmed by spraying plants with 150 .tg/ml BASTA and 

subsequently scoring for BASTA resistance 4 days later. The presence of abil was selected in the 

F2 generation on MS media containing 3 rM ABA (Koomneef et al. 1984). The ndrl and edsi 

mutations were identified by allele specific PCR (Century et al. 1997; Falk et al. 1999). 

2.2 Pathogen growth and disease resistance assays 

P.syringae pv tomato DC3000 (PstDC3000) (Whalen et al. 1991) was grown in King's broth (KB) 

liquid media supplemented with 50 mg/l rifampicin. Four week old soil-grown plants were 

infected with a Pst DC3000 suspension (0D600  = 0.0003) in 10 MM MgCl2  by infiltrating the 

abaxial side of the leaf with a 1 ml syringe (Cao et al. 1994). Three leaves per plant and three to 

five plants per line were infiltrated. After three days, leaves were harvested for analysis of 

bacterial growth. Leaf discs of uniform size (0.5cm2) were made from the leaf samples using a 
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cork borer. Three leaf discs from each plant were ground in 990 Iti 10 MM M902 in a pestle and 

mortar. Serial dilutions were made from the resulting bacterial suspension, and 100 il of each 

dilution was used to inoculate KB medium plates containing 50 mg/i rifampicin. The plates were 

incubated at 30°C for 2 days, and the number of bacterial colonies for each sample was recorded. 

Bacterial counts were statistically analysed using the Student T test (Mini-tab version 13). 

Pseudomonas syringae pv tomato DC3000 (avrB) (PstDC3 000 (avrB)) was grown on Kings Broth 

supplemented with 50 mg/i rifampicin and 50 mg/I kanamycin. Liquid cultures were grown on a 

shaker at 30°C, and cells were pelleted by centrifugation and re-suspended for plant inoculation in 

10 MM MgCl2  at OD600  equal to 0.2 (the equivalent of 106  colony forming units per cm2). For 

inoculations, 10 tl of the PstDC3000 (avrB) solution were forced under the abaxial epidermis 

using a I ml syringe. Successful inoculations were visualised by the appearance of a watery area 

under the epidermis. 

Erisyphe cichoracearum UED1 (Grant et aL, 2003) infection assay was performed by transferring 

3-4 week old plants to the transgenic greenhouse, an environment conducive to promiscuous 

growth of the pathogen, and by evenly tapping spores from highly infected wild-type plants. 

Results were obtained after 6 days, and infected plants were scored for visual pathogen sporulation 

(Figure 3.4). Scoring was as follows: 0 = no pathogen sporulation, 1 = 1-2 leaves with <25% of 

the surface showing pathogen sporulation, 2 = 3-4 leaves with 25-50% of the surface showing 

pathogen sporulation, 3 = = 3-4 leaves with > 50% of the surface showing pathogen sporulation, 4 

= most of the leaves showing > 50% of the surface showing pathogen sporulation, 5 = all leaves 

showing> 50% of the surface showing pathogen sporulation. Plants in different replicates were 

assigned a disease index as follows: D.I.=i.j/n, where i = Infection class, j = the number of plants 

scored for that infection class and n = the total number of plants in the replicate (based on Epple et 

al. 1997a). 8 to 16 plants were infected per each line; experiments were repeated three times with 

similar results. 

For testing resistance against Botiytis cineria (Grant et al., 2003), six week-old Arabidopsis plants 

were inoculated with a virulent isolate (PIH2). Conidial spores (1 x 105  per ml) suspended in 

potato dextrose broth were sprayed onto plants until droplets ran off. Inoculated plants were 

incubated at 100% relative humidity for 3 days before being examined for typical necrotic lesions 

caused by B. cineria infection (Figure 3.6). Scoring was as follows: 0 = no necrotic lesions, 1 = 1-

2 leaves with necrotic lesions, 2 = 3-4 leaves with necrotic lesions, 3 = 5-6 leaves with necrotic 
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lesions, 4 = greater than 6 leaves showing necrotic lesions, 5 = all leaves showing necrotic lesions. 

Plants in different replicates were assigned a disease index as follows: D.I.i,j/n, where i = 

Infection class, j = the number of plants scored for that infection class and n = the total number of 

plants in the replicate (based on Epple et al. 1997a). Twenty plants were infected for each line. 

Experiments were repeated twice with similar results. 

Peronosporaparasitica Noco2 was maintained as reported in Bowling et al. (1994). Typically, 3-

week-old soil-grown plants were infected by spraying a solution of 1x106  conidiospores per ml. 

Plants were maintained in humid conditions for 10 days and results were taken at this point. 

Infected plants were scored by counting the number of conidiophores per leaf. Three to eight 

leaves per plant were scored and three to six plants per line were examined. Experiments were 

repeated at least three times with similar results. 

Cauliflower mosaic virus BJ1 (CaMV) infection was carried out pipetting 2 pJ of a 50 ng/pi 

CaMV solution on one of the first two true leaves (each plant received lOOng of virus). The 

abrasive carborundum powder (Sigma-Aldrich) was also added to the working solution. Plants 

were maintained at 19°C and low-light conditions for 30 days after treatment and subsequently 

scored for visual symptoms. Scoring was as follows: 0 = no infection, 1 = half of the leaves with 

symptoms, 2 = all leaves showing symptoms. Plants in different replicates were assigned a disease 

index as follows: D.L=i.j/n, where i = Infection class, j = the number of plants scored for that 

infection class and n = the total number of plants in the replicate (based ob Epple et al. 1997a). 8 

to 12 plants were infected for each line. Experiments were repeated twice with similar results. 

Pseudomonas fluorescens pv phaseolicola NPS3 121 (Lu et al., 200 1) was grown on KB liquid 

media supplemented with 50 mg/i rifampicin. Four-week-old soil-grown plants were infected with 

a P. fluorescens suspension (0D600  = 0.0003) in 10 MM MgCl2  by syringae infiltration, as 

described above for Pst DC3000 infection. Measurements of bacterial growth and statistical 

analysis were carried out as described for Pst DC3 000 infection. 

2.3 DNA and RNA blot analyses 

2.3.1 Southern blot analysis 

DNA (10Ig) isolated from ads] mutant line was digested overnight using the restriction enzymes 

Apal, BamHl, EcoRI, Kpnl, Sad, Spel, Taqi and Xhol, (Promega, UK). Digested samples were run 

through a 0.8% agarose gel and transferred onto a nylon membrane (Amersham, UK) according to 
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the supplier instructions. The membrane was pre-hybridised for 1 hour at 42°C and hybridised 

sequentially with two probes (described below). Probes were labelled with a-32P-dCTP by random 

priming using the Prime-a-Gene® labelling system (Amersham, UK). Hybridization was run over-

night at 65°C according to the instructions of the supplier (Promega, UK). Blots were washed 

twice for 30 ruin each at 65°C in 4 X SSC (solution of sodium citrate), 1% (w/v) SDS, which was 

followed by two washes at 65°C in 4 X SSC, 0.5% (w/v) SDS. Blots were exposed to X-Omat-

ARTm imaging film (Kodak) for an appropriate time period. Blots were stripped by incubation in 

boiling 0.1% (w/v) SDS and washing in 0.5 X SSC for 30 min at room temperature, before 

hybridization with a subsequent probe (Sambrook et al. 1989). 

Two DNA fragment were employed as probes: a 339 bp fragment corresponding to the CaMV35S 

enhancer region and a 610 bp fragment corresponding to the BAR gene. Probes were obtained by 

PCR using primers 5'-GATCCCCAACATGGTGGAGCACG-3' and 5'-TAGATATCACATCAA 

TCCACTTGC-3' (CaMV35S enhancer); 5'-GAAGTCCAGCTGCCAGAAAC-3' and 5'-

CACCAAATCGACTCTAGCCA-3 '(BAR gene). 

2.3,2 Northern blot analysis 

Total RNA was extracted from Arabidopsis leaves harvested from 5-week old plants using the 

guanadinium thiocyanate (GTC) phenol chloroform extraction method as described in Grant et al. 

(2003). In summary, leaf tissue (approximately 0.3g) was ground in liquid nitrogen using a pestle 

and mortar, poured into a 1.5 ml eppendorf and 0.45 ml GTC solution (4M guanadinium 

thiocyanate, 25 mlvi sodium citrate, 0.5% (w/v) sarcosyl, 0.1 M 13 mercaptoethanol) was added. 

Following mixing by vortexing, 0.05 ml 2 M sodium acetate pH4.0, 0.45 ml phenol and 0.1 nil 

chloroform:iso-amylalcohol (49:1) were added. The samples were centrifuged, the supernatant 

removed carefully and transferred to a new tube. An equal volume of isopropanol was added to 

each tube, mixed and left at -20°C for at least 2 hours. RNA was recovered by centrifugation and 

pellet was re-dissolved in 0.15 ml GTC solution, and re-precipitated by the addition of 0.15m1 

isopropanol and storage at -20°C for 1 hour. Following centrifugation, the RNA pellet was washed 

twice in 70% ethanol, dried and dissolved in 100 .tl DEPC-treated water. Alternatively, RNA 

extraction was carried out using an RNA kit (Qiagen, CA, USA) according to the instructions of 

the supplier. The absorbance of each sample was measured at 260 nm, and used to calculate the 

concentration of RNA. Samples (10 sg) were separated on formaldehyde-agarose gels (Sambrook 

et al. 1989), transferred to a Hybond-N hybidization membrane according to the instructions of 

the supplier (Amersham, UK) and hybridized with the relevant probes (described below). Dextran 
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sulphate (10% wlv) was included in the pre-hybridization I hybridization solution in order to 

enhance efficient binding of the probe (Sambrook et al. 1989). Blots were washed twice for 30 

min each at 65°C in 4 X SSC, 1% (wlv) SDS, which was followed by two washes at 65°C in 4 X 

SSC, 0.5% (wlv) SDS. Blots were exposed to X-Omat-ARTm imaging film (Kodak) for an 

appropriate period. Blots were stripped by incubation in boiling 0.1% (w/v) SDS and washing in 

0.5 X SSC for 30 min at room temperature, before hybridization with a subsequent probe 

(Sambrook et al. 1989). 

Probes were prepared by amplification of appropriate sequences using PCR and directly purified 

using a kit (Promega, UK) (Table2.2). Alternatively, probes were generated from plasmids by 

digestion with relevant restriction enzymes and purified from the gel by freeze-thaw extraction 

(Table2.2). Sequences for the PCR primers and templates used for each probe are reported. Probes 

were labelled with ct-32P-dCTP by random priming using the Prime-a-Gene® labelling system 

(Promega, UK). 

Table 2.2 DNA probes employed for northern blot analysis. 

Gene Template Forward primer [ Reverse primer RE 

ADRI pSK-ADR1 17 T3 - 

PR-I TA-PR1 CTgCAgACTCATACACTCTgg TATgTACgTgTgTATgCATgATC - 

GSTI pSK-GST1 GgTrC1TrAAgTgAATCTCAAA CAAgACTCATTATCgAAgAUAC - 

PDF1.2 genomic DNA TCAT9gCTAAgTTTgC17CC AATACACACgA1TVA9CACC - 

DREBIA pUC19-BRE81A 17 T3 - 

DREB2A pUC19-BREB2A 17 T3 - 

RD22 pUC19-RD22 - 
- EcoRI 

RD29A pUC19-RD29A - - 

EcoRl 

Hind/Il 

R18 pSK-18S 17 T3 - 

2.4 Biochemical Analysis 

For measurements of ethylene emission, 4-week-old plants were removed from soil, their roots 

were washed and each plant was subsequently placed in an air-tight 50 ml syringe. After 5 hours a 

5 ml gas sample removed from the headspace was subjected to gas chromatography using a 

HP5980 series II gas chromatograph (Hewlett Packard, Palo Alto, CA) equipped with a Poropack 
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N column and a flame ionisation detector. The ethylene emission measurement was performed on 

15 to 20 independent plants per line and determined by comparison with known standards. 

Free endogenous JA was quantified by gas chromatography/mass spectrometry. Quantification 

procedure was carried out by Dr Mike Beale, coordinator of the GARnet project "Metabolite 

profiling of Arabidopsis". The stable, labelled isotope, 2H2-JA (90.4% total JA), was employed as 

an internal standard. The samples were extracted three times with 70% methanol. The combined 

extract was then passed through a C18  solid phase extraction cartridge (pre-conditioned, in turn 

methanol and 70% methanol) and washed with 70% methanol. The combined eluate and washings 

were vacuum concentrated, diluted with 2.5 ml of water and acidified with 0.15 ml concentrated 

hydrochloric acid. The aqueous phase was extracted with chloroform and concentrated to 0. 2m1 

before transfer to a 0.2 nil autosampler vial. Samples were evaporated to dryness and derivatized 

with hexane and N-methyltrimethylsilyl-trifluoroacetamided and analysed on a Micromass GC-

TOE mass spectrometer in accurate mass acquisition mode. Endogenous JA was quantified on the 

basis of the ration of the JA: 2H2-JA integrated peak areas for the molecular ions (mlz 282.1651 

and 284.1777 respectively). For each sample, three sample preparation replicates were each 

analysed in triplicate. 

Free and total endogenous SA levels were determined by Dr Mike Beale, coordinator of the 

GARnet project "Metabolite profiling of Arabidopsis", essentially as described by Bowling et al. 

(1994). Briefly, frozen leaf tissue samples (ig) were extracted with methanol, dried down and re-

suspended in 0.01M H2SO4, 
 and free SA levels were analysed using an HPLC methodology. 

2.5 Histochemical analyses 

Trypan blue staining was employed to examine dead plant cells. Leaves were stained by boiling 

for 5 minutes in alcoholic lactophenol trypan blue (20 ml of ethanol, 10 ml of phenol, 10 ml of 

water, 10 ml of lactic acid and 10 mg of irypan blue). Stained leaves were cleared in chloral 

hydrate (2.5 g in 11 of water) overnight at constant shaking and then mounted under coverslips in 

60% glycerol (Bowling et al., 1997). 

Hydrogen peroxide (H202) production was detected by histochemical staining using 3,3-

diaminobenzidine (DAB) as described by Thordal-Christensen et al. (1997). Leaves were stained 

by 5 minutes treatment with a solution of I mg per ml DAB over-night in constant shaking. 

Leaves were then cleared by boiling in acetic/glycerol/ethanol (1/1/3 v/v/v) solution and then 

mounted under coverslips in 60% glycerol. 
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2.6 Real time in planta imaging of LUC activity 

Leaves PRI::LUC transgenic plants were painted with a solution containing 1mM Luciferin 

(Promega, UK) and 0.01% triton X-100 and 0.03% Silwet in a imiVi sodium citrate buffer (pH 

5.8). Plants were placed in the dark for 30 minutes in order to allow the luciferin to dry and to 

minimise background bioluminescence. All in planta LUC imaging was performed using an ultra 

low light imaging camera system (EG & G Berthold Luminograph 980). Images were collected 

over a 10 second time period. Microscopy imaging was carried out using Nikon Optiphot-2 

microscope. 

2.7 Abiotic stress treatments 

2.7.1 Drought stress assay 

For drought treatment, 4-week-old soil-grown plants were completely withheld from water for 15 

days and re-watered at day 16 (Kang et al., 2002). To minimize experimental variation transgenic 

and control plants were grown in the same tray (72 plants per tray). Experiments were repeated at 

least three times, with similar results, using approximately 40 plants per line. 

2.7.2 Extreme temperature assays 

To assess heat tolerance, 4-week-old plants were transferred into a heating chamber (Forma 

Scientific, Ohio, USA); the temperature was increased sequentially from 22°C to 42°C, via a 5°C 

increase in temperature per hour (modified from Larkindale and Knight 2002). Plants were 

maintained in this condition for the times stated in the text. 

To assess freezing tolerance, 4-week-old plants were transferred into a freezing chamber and 

temperature was decreased sequentially from 12°C to - 5°C (Kasuga et al., 1999). Plants were 

maintained in this condition for 5 hours. 

2.7.3 Salt- and metal-stress assay 

To examine potential salt or metal tolerance, 4-week-old soil grown plants were irrigated with an 

increasing concentration of either salt or metal every 4 days. The concentrations of sequentially 

applied sodium chloride and potassium chloride were 50 mM, 100mM and 150 mM; for sorbitol, 

concentrations of 100 mM, 200 mM and 300 mM were applied. For CuSO4  these concentrations 

were 8 mM, 14 mM and 20 mM; and, for CdC12, concentrations of 12 mM, 18 mM and 25 mM 

were sequentially applied (modified from Song et al. 2003). 
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2.7.4 Measurement of transpiration rates 

The aerial structure of 4-week-old plants were detached from their roots and maintained at room 

temperature. The weight of each aerial structure was subsequently determined every 20 minutes 

over a period of 5 hours (Kang et al., 2002). Each measurement was performed using 4 plants per 

line. Experiments were repeated at least twice with similar results. 

2.8 Homology searches and sequence analyses 

The bioinformatic tools from web-sites presented here (Table 2.3) were used for sequence search 

and analysis. Instructions were followed as detailed at site. Homology searches in Arabidopsis 

were carried out using BLAST and WIJ-BLAST2 at the TAIR web-site, whereas plant homology 

searches were conducted using the MIPS and TIGR databases. Protein sequence alignment and 

production of phylogenetic trees were performed using ClustalW and Phylodendron ClustalW 

respectively. The Arabidopsis Resistance Genes site was employed to evaluate sequence 

alignment. 

Table 2.3 Web-sites used for sequence search and analysis. 

Name Function Web-address 

BLAST Homology search in Arabidopsis http://www.arabidopsis.org/BlastJ  

WU-BLAST2 Homology search in Arabidopsis http:J/www.arabidopsis.org/wublastlindex2.jsp  

ClustalW http:/Iwww.ebi.ac.uklclustalwlindex.html 
Alignment of multiple peptide sequences 

At R genes Arabidopsis Resistance Genes Database http://niblrrs.ucdavis.edu/At_RGenesl  

Multiple Expectation 
Reveal motifs (highly conserved regions) in 

Maximisation for Motif http:llmeme.sdsc.edu/meme/websitelintro.html 
groups of related protein sequences 

Elicitation (MEME)  

Munich Information 
Plant Sequence Database and BLAST 

Centre for Protein http:IImips.gsf.de/projects/plants 
search 

Sequences (MIPS)  

The Institute for 
Plant Sequence Database and BLAST 

Genomics Research http://www.tigr.orgltdbleukl  
search 

(TIGR)  

Phylodendron ClustalW 
Representation of the neighbour-joining 

http://www.es.embnet.org/Servicesl  
trees 
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3) Isolation and characterization of activation tagging mutants 

perturbed in disease resistance 

3.1 Genomic screen project 

Analysis of the Arabidopsis genome has revealed the presence of many duplicated genes 

which are similar in their coding and non-coding sequences. Functional redundancy will 

therefore be a significant hurdle to the assignment of gene function in Arabidopsis, as 

has been the case for other higher eukaryotes (Miklos and Rubin, 1996; Ross-Macdonald 

et al., 1999). There is a second group of genes that are also difficult to uncover by 

classical screens. These genes encode proteins that function at multiple stages during the 

life cycle of the organism, one of which is essential for early embryo or gametophyte 

development. Loss-of-function mutations in these genes result in lethality. Obviously, 

this precludes the recovery of this mutant class from classical knock-out screens. 

Activation tagging is one of the approaches that have emerged to circumvent these 

problems (Kardailsky et al., 1999; Zhao et al., 2001; Borevits et al., 2000; Jeong et al., 

2002; Grant et al., 2003: Xia et al., 2004). 

3.1,1 Activation tagged methodology 

Approximately 20 millions seeds were generated by floral dip transformation of Col-0 

Arabidopsis plants with the activation tagging vector pSK1015 (Tani et al., 2004). This 

was accomplished with the technical support funded by Akadix Inc (CA, USA). The 

pSK1015 construct contains four repeats of the 35S enhancer element, a pBluescriptKS 

(Stratagene) plasmid backbone and the BAR gene which conveys resistance to the 

commercial herbicide BASTA (Figure 3.1). A project to isolate activation tagged 

mutants perturbed in disease resistance/susceptibility was carried out. T1  transformed 

seeds were germinated on soil flat and plants were selected by BASTA treatment seven 

days later. Resistant plants were transferred to pots and grown for approximately 3 

weeks. 
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BAR pKS 

LB pSK1O15 

4 x 35S 

RB 

I I BAR11 I KS .—r35S r35S r35S 1*35S Hfl 

LB RB 

---4activated gene 

Figure 3.lThe activation tagging vector pSK1015. 

T-DNA insertion cassette enclosed by left border (LB) and right border (RB) containing 

BASTA resistance gene (BAR), origin of replication of E. co/i (as part of pBluescriptKS (KS) 

plasmid) and tetramer of the 35S enhancer. This representation was adapted from Weigel lab 

web site: www.salk.edu/LABS/pbio-wlresearchfs.html.  

Integration of the 4x35S enhancer region into the plant chromosome may enhance the 

expression of endogenous genes adjacent to the T-DNA insertion activation cassette. 
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Subsequently, two strategies were employed: activation tagged mutants were tested for 

either enhanced disease resistance or susceptibility after leaf infiltration with 

Pseudomonas syringae pv tomato DC3000 suspension (Pst DC3000 suspension of OD = 

0.002 for resistance screen and OD = 0.0003 to test susceptibility). Mutants exhibiting 

either enhanced resistance or susceptibility were identified 3 to 4 days post infection. 

Seeds were collected from each individual candidate. Plants showing abnormal 

phenotypes were also identified and seeds collected. Particular attention was paid to 

plants of reduced stature or showing lesion mimic phenotypes since these developmental 

abnormalities are common among well-characterised disease resistance mutants (Frye 

and Innes, 1998; Maleck et al., 2002; Pilloff et al., 2002). Seeds of the remaining plants 

were collected in pools (70 plants per pool) in order to create a valuable community 

resource. Overall, more than half of the T1  seed, corresponding to about 12 million seeds 

and 40,000 individual T1  tagged plants (transformation rate of approximately 0.3%), 

were screened and ninety-one T1  candidates were isolated. Approximately 15% of T 

candidates were sterile, preventing further analysis. Surprisingly, only two candidates 

were confirmed in the following generation (T2) and the characterisation of one of these 

lines is reported here. 

3.1.2 Search for loss-of-function mutations 

To also uncover recessive, loss-of-function mutations, T2  plants were screened. 

Approximately one thousand seeds for pool were germinated; since each pool was 

generated by 70 T1  plants, we expected to test approximately 16 T2  plants, four of which 

were homozygous for the 1-DNA insertion, per each Ti line. 4-week-old plants were 

searched for lesion-mimic, abnormal or reduced phenotypes. This approach enabled the 

search for recessive, homozygous mutant lines that could not have been isolated in the 

T1  screen. 

This project was carried in collaboration with Pedro Nuremberg; 37 putative mutants 

were isolated. To date two recessive disease resistance mutants and two recessive 

enhanced disease susceptibility mutants have been confirmed following a back-cross 

with wild-type plants. The description of the first enhanced disease susceptibility mutant, 
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isolated in the T1  screen for dominant mutations, is reported below, whereas the 

characterization of one tagged disease resistance mutant is described in chapter 4. In 

addition, another student has now followed-up the characterization of the recessive 

mutants identified in the T2  screen, but these analyses will not be described here. 

3.2 Isolation and characterisation of the ads] mutant 

One T1  mutant exhibited reduced stature and pale green serrated leaves (Figure 3.2). 

Furthermore, this line showed striking loss of apical dominance and reduced fertility 

(Figure 3.2). Approximately 300 T2  plants were treated with BASTA 3 weeks after 

germination. In total, approximately 75% (226/297) of these T2  progeny retained the 

mutant phenotype and were BASTA resistant, whereas all plants exhibiting a wild-type 

phenotype, about 25% (71/297), were BASTA susceptible. The chi-square value of T2  

plants ()? = 0.194; P = 0.01 with one degree of freedom) showed a BASTA 

resistance: susceptible ratio that did not deviate significantly from the expected 3:1 ratio 

with a confidence of 99%. These results suggested that a single dominant mutation was 

responsible for this phenotype. 

3.2.1 ads I exhibits enhanced disease susceptibility 

T2  progeny was also tested for their response to Psi' DC3000 infiltration (OD = 0.0003). 

All T2  plants expressing the mutant phenotype exhibited enhanced disease susceptibility, 

similar to that of the enhanced disease susceptibility (eds) 1 mutant (Feys et al., 1994), 

while wild-type plants failed to show disease symptoms at this inoculation of Pst 

DC3000. Consequently, this analysis was repeated and the number of Pst DC3000 in 

infected leaves was scored three days later. As shown in Figure 3.3, this mutant is 

significantly more susceptible to Psi' DC3000 than wild-type plants. This mutant line 

was therefore designated activated disease susceptibility (ads) 1. 
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Figure 3.2 The adsi mutant phenotype. 

25-day-old wild-type (a) and adsi (b) plant grown in short day condition; and 6-week-old 

flowering wild-type and adsi plants (c). 
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Figure 3.3 adsl plants exhibit enhanced susceptibility to Pst Dc3000. 

Plants were challenged with virulent Pst DC3000 bacterial suspension of OD = 0.0003 by 

pressure infiltration. Col-0 wild-type plants and nahG transgenic lines were included as controls. 

Pathogen growth was analysed 3 days after challenge. The experiment was repeated 3 times; 

error bars represent standard deviations. 

36 



To investigate whether ads] susceptibility was specific to Pst DC3000, ads] plants were 

infected with different pathogens. First, ads] and wild-type control plants were 

challenged with Erysiphe cichoracearum UED1 (Grant et al., 2003), and infection rate 

was calculated 6 days later. As presented in Figure 3.4, ads] exhibited an infection rate 

similar to that of wild-type control plants. The ads] mutants were also infected with 

Peronospora parasitica N00O2 (Bowling et al., 1994). Again, ads] did not show 

enhanced susceptibility compared to wild-type plants. Thus, Pst DC3000 was the only 

pathogen tested that showed enhanced growth in ads] plants. 

To investigate the response of the ads] line to a necrotrophic pathogen, ads] and control 

plants were challenged with Botrytis cinerea PJH2 in collaboration with Pedro 

Nuremberg (Grant et al., 2003). Interestingly, ads] plants exhibited striking enhanced 

disease susceptibility (Figure 3.5). Wild-type Col-0 plants showed moderate B. cinerea 

lesions 5 days after infection, while ads] plants had collapsed and were fully covered by 

B. cinerea hyphae (Figure 3.6). Additionally, ads] plants showed infection symptoms 2 

days post B. cinerea challenge, whereas wild-type plants remained healthy. These results 

suggested that enhanced disease susceptibility in ads] plants is not limited to P. syringae, 

a hemi-biotrophic pathogen, but it is also extended to the necrotrophic pathogen B. 

cinerea. 

The ads] line was also tested for enhanced disease susceptibility against the non-host 

pathogen Pseudomonas fluorescens pv phaseolicola NPS3 121 (Lu et al., 2001). 

Surprisingly, ads] plants supported greater P. fluorescens growth than wild-type plants, 

therefore ads] is also impaired in non-host disease resistance (Figure.3. 7). 

3.2.2 Procedures to identify the ADS  gene 

From this preliminary characterisation of the ads] mutant, the novelty of this defence 

deficient mutant was evident. Thus, we initiated experiments to identify the activation 

tagged ADS 1 gene. A Southern blot analysis was performed in order to confirm the 

presence of only one T-DNA insertion. Genomic DNA of ads] was isolated, purified 

and digested with 8 restriction enzymes, whose recognition site was not present in the 
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Figure 3.4 adsl mutants do not show enhanced susceptibility to E. cichoracearum. 

Plants were challenged by gently dusting E. cichoracearum spores from the leaves of infected 

wild-type plants. Col-0 wild-type plants and nahG transgenic lines were included as controls. 

Pathogen growth was detected 7 days after infection in both wild-type and adsl plants (a). 

(b) Plants were scored employing a disease index (as described in "Experimental Procedures") 

for visual fungal growth 7 days after dusting E. cichoracearum spores. 
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Figure 3.5 adsl plants exhibit enhanced susceptibility to B. cinerea 

Plants were sprayed with a B. cinerea fungal solution of 105  spores per ml. Wild-type plants and 

the JA insensitive coil mutants were included as controls. Plants were scored employing a 

disease index for visual disease symptoms 4 days post infection. 
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Figure 3.6 adsl plants exhibit enhanced susceptibility to B. cinerea. 

Plants were infected by spraying a B. cinerea fungal solution of 105  spores per ml. 

Pathogen symptoms on Col-O control plants (a and b) and adsi mutants (c and d) are shown 4 

days after challenge. 
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Figure 3.7 adsI exhibits enhanced susceptibility to the non-host pathogen P. fluorescens. 

Plants were challenged with a non-host P. fluorescens by pressure infiltration of bacterial 

suspension of OD = 0.0003. Bacterial growth was analysed 3 days after challenge. Error bars 

represent standard deviations. 
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DNA sequence used as the probe: a 370 bp PCR product, corresponding to the 355 

enhancer element. Results showed only one specific band for every restriction enzyme 

employed (Figure 3.7), thus confirming the presence of only one T-DNA insertion. In 

addition, a specific 700 bp PCR product corresponding to the BAR gene, which conveys 

BASTA resistance and is located adjacent to the left border of the T-DNA insertion, was 

employed as a probe in a Southern blot analysis. Results confirmed the presence of a 

single and intact T-DNA insertion. 

Subsequently, a TAIL-PCR procedure was employed to identify the ADS1 gene; 6 

different degenerate primers were employed in combination with specific primers from 

either the left border or the right border of the inserted T-DNA (Liu et al., 1995). This 

approach was unsuccessful. Consequently, inverse PCR was employed (Yuanxin et al., 

2003). This approach also failed to amplify any specific DNA sequence. A plasmid 

rescue methodology was therefore employed to uncover the activation tagged ADS] 

gene (Ichikawa et al., 2003). The plasmid rescue experiments were repeated several 

times using the restriction enzymes EcoRI, Hindlil, Kpnl, Spel and Taql. Again, these 

experiments were unsuccessful. Another student has now followed-up this project by 

screening a genomic library and is currently testing candidate genes for ADS]. 

Figure 3.8 Southern blot analysis of adsi genomic DNA 
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Genomic DNA isolated from adsi plants (10 ng per line) was digested with Apal (line A), BamHl 

(B), EcoRl (E), Kpnl (K), Sad (sa), Spel (Sp), Taql (T) and Xhol (X), run on a gel and transferred 

onto a membrane. This filter was subsequentially hybridised with a probe corresponding to the 
CaMV35S enhancer element present in the T-DNA insertion. The size of each band can be 

enferred by the ladder scale represented on the right. 
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3.3 Discussion 

Screens of activation tagged mutant population have been a successful tool to investigate 

plant metabolism (Weigel et al., 2000; Tani et al., 2004). Recently, two tagged mutants 

perturbed in defence response have been isolated (Grant et al., 2003; Xia et al., 2004). 

Thus, the large-scale screen we are carrying out will enable the isolation of novel 

mutants and the corresponding genes. Results presented here showed that one enhanced 

disease resistant mutation and one enhanced susceptible mutation, among the 91 T1  

candidates, were confirmed in the following T2  generation. Approximately 15% of T1  

candidates were sterile, preventing further analysis; these results were consistent with 

the conclusions of similar studies reported in the literature (Jeong et al., 2002; 

Maldonado et al., 2002; Nakazawa et al., 2003). However, the unexpected low number 

(2%) of mutant lines confirmed in T2  was inconsistent with results from similar 

activation tag projects (Jeong et al., 2002; Maldonado et al., 2002; Nakazawa et al., 

2003). The growing and/or environmental conditions, specific for the screen described 

here, probably contributed to the isolation of a greater number of false T1  candidate lines 

compare to that of similar studies. In addition, it is likely that several T2  lines lost the T-

DNA insertion because approximately 20% of T2  lines failed to retain BASTA 

resistance. 

The ads] mutant showed increased susceptibility to Pst DC3000, which is an hemi 

biotrophic pathogen, resistance against which requires the activation of plant SA-

dependent defence pathway. However, ads] plants exhibited disease symptoms similar 

to that of wild-type plants following challenge with two biotrophic pathogens, P. 

parasitica and E. cichoracearum, resistance against which requires the establishment of 

plant SA-dependent defence pathway. In addition, ads] plants were strikingly more 

susceptible to B. cinerea, resistance against which requires the activation of JA-

dependent defence response. Thus, ads] plants seem to exhibit enhanced susceptibility 

against some, but not all pathogens. Several loss-of-function mutants exhibit enhanced 

susceptibility to pathogens, resistance against which requires the activation of a plant 

SA-dependent defence pathway (Cao et al., 1994; Glazebrook et al., 1996; Aarts et al., 
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1998); however, none of these mutants simultaneously show enhanced susceptibility to 

pathogens resistance against which requires the activation of a plant JA-dependent 

defence response. To our knowledge, ads] is the first mutant that exhibits coexisting 

enhanced susceptibility to distinct pathogens whose recognition requires both SA- and 

JA-dependent signalling pathways. 

Furthermore, ads] permitted a massive growth of P. fluorescens, which is a non-host 

pathogen of Arabidopsis. Therefore, ads] is not only impaired in host, but also in non-

host bacterial resistance. To date, only one mutant, nhol, has been reported to be 

compromised in non-host resistance (Lu et al., 2001). It has been recently established 

that NHO1 encodes a glycerol kinase (Kang et al., 2003). In addition, nhol plants 

showed increased susceptibility to B. cinerea, but exhibited a response to the hemi-

biotrophic pathogen Pst DC3000 and the biotrophic pathogen P. parasitica equivalent to 

that of wild-type plants (Lu et al., 2001). Therefore ads], to our knowledge, is the first 

mutant which simultaneously exhibits increased susceptibility to hemi-biotrophic, 

necrotrophic and non-host pathogens. 

It is difficult to hypothesize how ads] might affect disease resistance because the ADS] 

gene has not been identified yet. The strong loss of apical dominance might suggest a 

role for the phytohormone auxin (Leyser, 2003). Interestingly, a growing number of 

reports are supporting the hypothesis that this hormone might also be involved in 

defence response (Cheong et al., 2002; Tiryaki and Staswick, 2002). An Arabidopsis 

mutant insensitive to JA has been shown to be allelic to the auxin-signalling deficient 

mutant axrl (Lincoln et al., 1990; Tiryaki and Staswick, 2002). This mutant was 

originally isolated as an auxin insensitive line, exhibited reduced leaf size, loss of apical 

dominance and partial sterility, due to limited pollen production (Estelle and Somerville, 

1987; Lincoln et al., 1990). Several morphological phenotypes of axrl parallel those of 

ads]. Recently, axrl was shown to be more susceptible than wild-type plants to the 

necrotrophic pathogen Pythium irregulare, whose recognition requires JA (Tiryaki and 

Staswick, 2002). Furthermore, treatment of wild-type plants with the auxin IAA induced 

the expression of several JA responsive genes, such as VSP, LOX and AOS (Tiryaki and 
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Staswick, 2002). These results strongly suggest a possible overlap of JA and auxin 

signalling pathways. Thus a defect in the balance of auxin to cytokinin may be 

responsible for both the loss of apical dominance in ads] plants and their enhanced 

susceptibility to specific host and non-host pathogens. Quantification analysis of phyto-

hormone levels in ads] plants will be required to confirm this hypothesis. 

ADS 1 might therefore function as a negative regulator of plant defence response. In 

unchallenged plants, ADS 1 may be constitutively active, contributing to preserve the 

finely-regulated mechanism that restricts the establishment of disease resistance. 

Following pathogen recognition, wild-type plants may repress ADS  activity in order to 

trigger disease resistance. In ads] mutants, the constitutive over-expression of the 

negative regulator ADS 1 may delay the mechanism that establishes disease resistance 

and consequently contribute to enhanced susceptibility to several pathogens. The fact 

that ads] plants exhibited increased susceptibility to various host and non-host 

pathogens is consistent with this hypothesis. Nevertheless, ads] retained a response 

against E. cichoracearum and P. parasitica similar to that of wild-type plants, 

suggesting that ADS 1 is specifically required in the establishment of defence response 

against some, but not all, pathogens. In order to confirm the function of ADS1 as a 

negative regulator of plant defence response, plants carrying a loss-of-function mutation 

in ADS] gene will be generated. Analysis of this line will elucidate whether the loss of 

ADS  function will cause the activation of defence response. The expression analysis of 

ADS] in wild-type plants during compatible and incompatible interactions will be also 

examined. These investigations may validate the putative function of ADS 1 as negative 

regulator of plant defence. 

Alternatively, ADS  may represent a key host compatibility factor (Ham et al., 1999; Jin 

et al., 2003; Gao et al, 2004). Compatibility factors are essential host proteins exploited 

by pathogens in order to successfully invade and infect the host system (Gao et al, 2004). 

The over-expression of ADS] gene, encoding a host compatibility factor of unknown 

function, may therefore be responsible for the susceptible phenotype observed in ads] 

plants. This hypothesis would be consistent with the enhanced disease susceptibility of 
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ads] plants against a number of host and non-host pathogens. Host factors often interact 

physically with virulence factors expressed by the invading pathogen (Ham et al., 1999; 

Gao et a!, 2004). Co-immunoprecipitation analysis of extracts from infected wild-type 

plants, employing a specific ADS1 antibody, might elucidate whether ADS1 physically 

interacts with a virulence factor. Furthermore, the structure of the ADS1 protein, 

inferred by genomic sequence, will also help to establish whether the activity of this 

protein may facilitate pathogen invasion and infection of the host plant system. 
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4) ADR1 overexpression conveys broad-spectrum disease resistance 

4.1 Identification and characterisation of the adri mutant 

A novel Arabidopsis transgenic line containing a chimeric PR1;:LUC construct was 

generated in the Loake laboratory in order to detect the establishment of SAR in living 

plants by ultra low lighting imaging. This transgenic line was confirmed to mark SAR 

development with high fidelity and was proved to be a useful tool to identify mutants 

with perturbed expression of defence-related genes (Murray et al., 2002). 

4. 1.1 Isolation of disease resistance mutants 

The screen of a large activation tagged population generated in the PR1..LUCtransgenic 

background was undertaken in order to discover potentially redundant and/or essential 

genes which might encode key signalling component responsible for the establishment 

of disease resistance. It is noteworthy that all similar studies reported at that time 

exploited loss-of-function methodologies (such as EMS or fast neutron bombardment); 

hence, activation tagging screening was a novel approach in this field (Lorrain et at., 

2003). A large number of Arabidopsis lines were screened for constitutive LUC activity 

via ultra low light imaging and a few lines that exhibited heritable, constitutive LUC 

activity were identified. One of these mutants, subsequently designated as activated 

disease resistance (adrl), was further analysed (Grant et al., 2003). 

This mutant exhibited a strong phenotype consisting of reduced stature and curled leaves 

compared to Col-0 wild-type plants. In the T2  generation the adri phenotype segregated 

in a semi-dominant manner, with homozygote adrl/adrl plants exhibiting a more severe 

phenotype and greater LUC activity than hemizygote adri/ADRJ plants (Grant et al., 

2003). Moreover, the onset of the acirl phenotype in both homozygous and hemizygous 

plants was generally observed 2 weeks after germination, prior to which time adri 

plants were undistinguishable from wild-type (Grant et al., 2003). 
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4.1.2 Characterisation of the adri mutant 

To confirm endogenous PR] expression, adri mutants were investigated by northern 

blot (Grant et at., 2003). adrl plants constitutively expressed PR], PDFI.2 and GSTJ, 

which were genes respectively induced by SA, JA/ET and ROI; these three genes play 

important roles in the establishment of resistance against a broad spectrum of pathogens. 

The adri/adri mutant exhibited greater defence transcript accumulations than 

adri/ADR1 plants. Moreover, adri mutants exhibited significant resistance against 

Peronospora parasitica, Erysiphe cichoracearum and Pseudomonas syringae (Grant et 

al., 2003). These data confirmed that adri plants not only constitutively expressed 

defence-related genes, but also displayed enhanced resistance against a number of 

pathogens. 

To investigate the requirement of ADR I function for SA, JA and ET, adri was crossed 

with transgenic nahG plants, compromised in SA accumulation (Delaney et at. 1994), 

with nprl, a mutant insensitive to SA (Cao et al. 1994) and with the JA and ET 

insensitive mutants, coil and ein2 respectively (Feys et al. 1994; Guzman and Ecker, 

1990). Interestingly, the adrl phenotype in adrl/ADRJ nahG double mutants was 

completely suppressed; however only partial suppression was observed in adri/adri 

nahG double mutants (Grant et al., 2003). Thus the accumulation of SA is required for 

developing the adrl phenotype. In adrl/coil, adrl/ein2 and adrl/nprl double mutant 

plants physical stature and leaf-curling were very similar to a(Iri mutants (Grant et al., 

2003). 

The expression of a number of defence-related genes in adr] double mutant plants was 

investigated via northern blot analysis (Grant et al., 2003). GST1 transcript accumulation 

was completely abolished in adri/ADRI nahG and partially decreased in adrl/adrl 

nahG double mutants. However, GSTJ expression appeared slightly higher in 

adri/ADRJ coil plants, but was unaffected in adrl/ADRI ein2 and adrl/ADR1 nprl 

double mutants. adrl-mediated GSTI expression was therefore partially dependent on 

SA. The expression of FRI was unmodified in adri/ADRI coil and adri/ADRJ ein2, 

but it was completely abolished in both adri/ADRJ nahG and adri/adri nahG. 
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Moreover adri/ADR1 nprl plants did not accumulate PR1 transcripts; thus adri-

mediated PR] expression was dependent on SA and NPRI. In addition, PDF1.2 

expression was abolished in adri/ADRJ coil plants. Thus, PDF1.2 accumulation 

mediated in adri mutants is dependent on JA but independent on SA and ET (Grant et 

al., 2003). 

To investigate further the role of ADRJ in disease resistance signalling, the expression of 

the ADRJ gene was analysed (Grant et al., 2003). ADRJ exhibited a vanishingly low 

basal level of accumulation in Col-0 wild-type plants; however, significant upregulation 

of ADRI was observed following infection with P. syringae carrying the avrB gene and 

application of SA or the SA analogue BTH. A lower induction level was detected in 

response to wounding injury (Grant et al., 2003). 

4.2 adri shows broad-spectrum disease resistance to biotrophic pathogens 

The establishment of disease resistance against pathogens is thought to be orchestrated 

by fine regulation of local and systemic concentration of specific defence signalling 

molecules such as SA, its conjugate SA 3-glucoside (SAG), JA and ET (Yun and Loake, 

2002; Devoto and Turner. 2003; Guo and Ecker, 2004). As mentioned in the 

introduction, adri plants accumulate high transcript levels of defence genes including 

PR], PDFI. 2 and GSTI, whose expression has been established to be dependent on SA, 

ET/JA and ROI accumulation respectively (Ward et al., 1991; Penninckx et al., 1996; 

Grant et al., 2000). We therefore investigated whether any key defence signalling 

molecules accumulated in adri plants. The severely reduced stature of adri/adri plants 

precluded the isolation of sufficient biomass for their biochemical analysis. Hence, the 

concentration of SA, SAG and JA were determined only in adri/ADR1 plants (in 

collaboration with Dr Mike Beale, coordinator of the GARnet project "Metabolite 

profiling of Arabidopsis"). The measurement of ET and H202  accumulation were 

undertaken in both adrl/ADR] and adri/adri mutants (at Edinburgh University). 
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SA has been shown to be essential for the development of SAR and, in several cases, for 

the successful establishment of resistance against biotrophic and hemi-biotrophic 

pathogens (Ryals at al., 1996; Shirasu et al., 1997). Interestingly adri plants 

constitutively accumulated high levels of both SA and SAG, seven and eleven times 

greater than those detected in wild-type plants respectively (Figure 4.1). Many disease 

resistant, lesion mimic mutants have been reported to accumulate similar constitutive SA 

levels (Brodersen et al., 2002; Maleck et al., 2002; Shirano et al., 2002; hrrain et al., 

2003). In contrast to these mutants, adri plants do not show any macroscopic cell death 

under normal growth condition, thus trypan blue staining analysis was performed to 

search for the presence of microscopic cell death. Both adri/ADRJ and, to greater 

extend, adri/adri plants exhibited regions of cell death (Figure 4.2). 
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(a-b) SA and SAG concentrations in adri/ADRI mutants and wild-type control plants are 

reported in (a) and (b) respectively. Error bars represent standard errors. 

Figure 4.2 Accumulation of microscopic cell death in adri mutants. 

(a-c) Accumulation of microscopic cell death uncovered by trypan blue staining in representative 

leaves of wild-type Col-O (a), adri/ADRI (b) and adri/adri plants (c). Magnification in each 

figure was lOX. 
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Resistance to necrotrophic pathogens is dependent on JA (Devoto and Turner, 2003). In 

contrast to SA, however, the concentration of JA was slightly decreased in adri/ADRJ 

mutants compare to wild-type Col-0 plants (Figure 4.3a). The ET-mediated defence 

pathway has been reported to play a critical role in both disease symptom development 

and resistance against specific pathogens (Stearns and Glick, 2003; Guo and Ecker, 

2004). The amount of ET released from adri/ADRI and adri/adri plants was not 

significantly different from that released from wild-type plants (Figure. 4.3b). Thus, the 

adri mutation does not result in a detectable increase in ET biosynthesis. Accumulation 

of H202  and other ROI occur following plant recognition of putative pathogens (Grant et 

al.. 2000). 3,3-diaminobenzidine (DAB) staining analysis revealed that adri plants 

possessed elevated H202  levels (Figure. 4.4). 
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Figure 4.3 Measurement of JA and El levels in adri plants. 

Level of JA in adri/ADRI mutants and wild-type Col-0 control plants. 

Amount of ET released from adr1/ADR1, adri/adri and wild-type Col-O control plants. 

Error bars in (a) and (b) represent standard deviations. 

Figure 4.4 Constitutive accumulation of H202  in adri mutants. 

(a-c) Accumulation of H202  reported by 3,3-diaminobenzidine staining in representative leaves of 

wild-type Col-0 (a), adri/ADR1 (b) and adri/adri plants (c). Magnification in each figure was 

lox. 
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SA and ROT accumulation strengthens previous results reporting enhanced resistance in 

adri plants against Peronospora parasitica N00O2, a biotrophic oomycete, and 

Pseudomonas syringae pv tomato DC3000, a hemibiotrophic bacterial pathogen (Grant 

et al., 2003). To extend this analysis, adri response to additional pathogens, including 

the biotrophic fungus Eysiphe cichoracearum UED 1, cauliflower mosaic virus (CaMV) 

BJI and Botrytis cinerea PJH2, a necrotrophic fungus was also investigated (Grant et al., 

2003). 

Wild-type plants infected with E. cichoracearum showed initial fungal growth four days 

after treatment. Seven days after pathogen challenge, control wild-type plants were 

considerably infected (Figure 4.5a) while adri did not show any fungal growth (Figure 

4.5b). At this time plants were scored employing a disease index for symptom 

development (Figure 4.5c). At 10 days post infection, wild-type plants were heavily 

infected whereas adri mutants showed only modest fungal growth. 

Response to CaMV was also investigated in adri plants. Wild-type seedlings were 

infected and peculiar symptoms were evident around 20 days after virus challenge. 

Disease resistance was ultimately scored 30 days after treatment with CaMV. At this 

time, wild-type plants showed strong symptoms (Figure 4.6a), caused by the virus 

infection, compared to control unchallenged plants (Figure. 4.6b); in contrast, 

challenged adri plants did not show any evident symptoms (Figure 4.6c). 
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Figure 4.5 adrl mutants exhibit E. cichoracearum resistance. 

Plants were gently dusted with E. cichoracearum spores from the leaves of infected wild-type 

plants. Pathogen growth was detected 6 days after infection in wild-type but not in adrilADRi or 

adriladri plants. Plants were scored employing a disease index, as described in "Experimental 

Procedures" for visual fungal growth 7 days after dusting F. cichoracearum spores. 
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Figure 4.6 adrl plants show CaMV resistance. 

(a-b) One of the first two leaves of 10 day old seedlings were scrubbed with a CaMV suspension 

of 50 ng per ml and visual symptom were assessed after 30 days. Wild-type challenged and 

unchallenged plants are represented in (a) and (b) respectively. 

(c-d) Challenged and unchallenged adri/ADRI mutants are shown in (c) and (d). 

(e) Plants were scored using a disease index for symptoms, as described in Experimental 

Procedures", development 30 days after CaMV challenge. 
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In order to investigate the response of adri plant against a wide range of pathogens, 

adri mutant resistance to the necrotrophic pathogen B. cinerea was also tested. Infection 

assays were performed with the help of Pedro Nurmberg. Plant were scored for distinct 

B. cinerea disease symptoms 4 days after infection and adri lines showed disease 

susceptibility similar to that of wild-type plants (Figure 4.7). 
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Figure 4.7 adrl plants do not exhibit enhanced resistance to B. cinerea. 

(a-b) Plants were sprayed with a B. cinerea fungal solution of 105  spores per ml. Wild-type plants 

(a) and adri/ADRI mutants (b) developed symptoms 4 days after infection. 

(C) Plants were scored employing a disease index for visual disease symptoms as described in 

"Experimental Procedures", 4 days post infection. JA insensitive coil mutants were included as 

negative control. 
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4.3 CaM V35S::ADR1 transgenic lines exhibit enhanced disease resistance 

To confirm that ADRJ over-expression was responsible for enhanced disease resistance, 

a transgenic line carrying ADRJ under the control of the constitutive cauliflower mosaic 

virus promoter CaM\735S was generated by Dr thhn Grant. Wild-type Arabidopsis 

plants were transformed with this construct (by Dr thhn Grant) and approximately 100 

T2 transgenic lines were screened for the characteristic adri phenotype. All transgenic 

CaMV35S:.ADRJ lines were categorized into three mapr morphological classes. 

CaMV35S.' .ADR1 lines belonging to the first class had the same phenotype as wild-type 

plants and line 23 was a representative example (Figure 4.8a). ants from the second 

class showed an adri/ADR1 phenotype and were represented by line 36 (Figure 4.8b). 

Finally, transgenic plants that exhibited severely reduced stature, similar to adri/adri 

mutants, were grouped into a third morphological class, represented by line 10 (Figure 

4.8c). 

CaMV35S::ADRI line 23 CaM V35S::ADR1 line 36 CaMV35S::ADRI line 10 

Figure 4.8 Phenotypic appearances of transgenic lines expressing ADRI under the 

control of the constitutive promoter CaMV35S. 

(a-c) CaMV35S::ADRI line 23 represents the class of plants showing wild-type phenotype (a). 

The group of CaMV35S::ADR1 lines that exhibit adri/ADRI phenotype are denoted by line 36 

(b), whereas line 10 (c) represents the class of plants showing severely reduced stature, similar 

to adri/adri mutants. 

To confirm that defence gene expression was activated in selected CaMV35S: :ADRJ 

lines, gene expression analysis was performed. The magnitude of the adri 

morphological phenotype was directly proportional to the level of ADRJ and PR] 
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transcript accumulations (Figure 4.9). In contrast, plants displaying a wild-type 

phenotype, such as line 23, were unable to accumulate either ADRJ or PR] transcripts. 

Surprisingly, three different ADRJ transcripts, of 2.8, 1.6 and 1.4 kb respectively, were 

identified by northern blot analysis, suggesting differential splicing or RNA editing 

(Figure 4.9). In this context, the differential splicing ofADR] exons would be consistent 

with the observed transcript sizes (Grant et al., 2003); however, confirmation would 

require reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. 

Figure 4.9 Gene expression analyses of CaM V35S::A DRI transgenic lines. 

The expression of ADRI and PR1 transcripts was enhanced in CaMV35S::ADRT line 36 and 10. 

SA treated and untreated Col-0 wild-type plants were included as controls. R18 was used to 

control equal RNA loading and transfer. Arrows on the right indicate transcript sizes as inferred 

from RNA ladder. 

In order to investigate whether ADRJ and PR] expression correlated with disease 

resistance, a pathogenicity assay was performed by challenging selected 

CaM V35S::ADR1 plant lines with P. parasitica. Results showed that plants with high 

(line 10) and intermediate (line 36) levels of ADRJ expression displayed high and 

moderate disease resistance respectively (Figure 4.10). Furthermore, plants that did not 

accumulate ADRJ (line 23) were as susceptible to P. parasitica as wild-type plants 

(Figure 4.10). 
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Figure 4.10 Resistance of selected CaM V35S::ADRI lines against P. parasitica. 

Plants were sprayed with a P. parasitica N00O2 suspension of 1x106  conidiospores per ml and 

the numbers of conidiophores per plant were counted 10 days after treatment. Col-0 wild-type, 

adrl/ADRI and nahG plants were included as controls. 

The presence of microscopic cell death areas and accumulation of H202, characteristic of 

the adri mutant phenotype, were investigated in selected CaMV35S..ADR1 lines. 

Results showed that line 36 and line 10 plants, which accumulated intermediate or high 

levels of ADR1 transcripts, exhibited accumulation of H202  and microscopic cell death 

(data not shown). Consequentially, these results confirmed that ADRI accumulation 

proportionally induced expression of defence-related genes and enhanced disease 

resistance, which tightly co-segregated with specific abnormal development in 

CaM V35S: .ADRJ transgenic lines. 

4.4 ADRJ gene expression 

To investigate further the potential role of ADRI in disease resistance, gene expression 

in response to defence-related stimuli was determined. Previous analysis by Dr John 

Grant suggested that ADRI was promptly expressed upon pathogen recognition, SA 

treatment and wounding stress. To further analyse ADRI expression, kinetic analysis 

after avirulent (Psi DC3000(avrB)) and virulent (Psi DC3000) infections were 
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performed. ADRI expression was detected at 1.5 hours post Psi DC3000(avrB) 

recognition (Figure 4.11). Similar results were obtained after plant infection with Psi 

D0000 carrying the avirulent Rpt2 gene. Interestingly, upon pathogen recognition 

ADRI was also expressed in unchallenged systemic tissues within 24 hours, and 

expression could be detected for as long as 5 days after infection. Hence, ADRI may 

function in defence signalling during both local R gene-mediated resistance and the 

establishment of systemic immunity. ADRI transcripts were also slightly induced 10 

hours after Psi D0000 infection and 3 days post E. cichoracearum infection. These 

results are consistent with the well established knowledge that both compatible and 

incompatible plant-pathogen interactions regulate similar set of genes, but, crucially, 

with different kinetics (Wan et al.. 2002). BTH, an analogue of SA, substantially 

included ADRI transcription. In addition, ADRI expression after wounding stress was 

also confirmed. To investigate ADRI regulation by additional key defence signalling 

molecules, ADRI gene expression was analysed in wild-type plants treated with Me-JA 

and the ET precursor 1-aminocyclopropane-l-carboxylic acid (ACC). These 

experiments suggested that ADRI expression was not cued by JA or ET (Figure 4.11). 

Psf (avrB) Pst (avrB) Pst (avrB) BTH Pst Wounding 
CoI-O ii L 24h S 120h S 120h lOh L 120h M-JA El 

ADRI 

R18 :. 

Figure 4.11 Analysis of ADRI gene expression in response to defence-related stimuli. 

ADRI northern blot analysis at given time in hours (h) in response to attempted infection by Pst 

(avrB) and Pst 003000. L denotes locally challenged leaves, whereas S indicates systemically 

unchallenged leaves. Wild-type plants were also exogenously treated with 0.1 mM BTH, 5 PM 1-

aminocyclopropane-1-carboxylic acid, an ethylene precursor (ET) or 50 1.tM M-JA. R18 was used 

to confirm equal RNA loading and transfer. 
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4.5 Characterisation of adrl double mutants 

To investigate the individual contribution of known defence signalling pathways to the 

establishment of the adri phenotype, Dr John Grant crossed adri plants with selected 

Arab idopsis mutants compromised in defence signalling. These included transgenic 

nahG plants, depleted in SA (Delaney et al. 1994), coil plants insensitive to JA (Feys et 

al. 1994), ein2 plants insensitive to ethylene (Guzman and Ecker, 1990) and the SA 

insensitive mutant, nprl (Cao et al. 1994). The expression analysis of selected defence-

related genes in adri double mutants was already established and reported in the 

introduction (4.1.2). To assess the contribution of distinct defence signalling pathways to 

the establishment of adrl-mediated resistance against P. parasita N00O2 and E. 

cichoracearuin UED I, the panel of adri double mutants was challenged with these 

pathogens. In addition, the level of SA, SAG, JA and ET were also determined. 

Both SA and SAG concentration are constitutively increased in adri/ADRI mutants 

compared to those detected in wild-type plants. Biochemical analysis was performed to 

examine whether adri double mutants maintained high levels of these metabolites (in 

collaboration with Dr Mike Beale, coordinator of the GARnet project "Metabolite 

profiling of Arabidopsis"). As shown in Figure 4.12, both adrl/ADRJ coil and 

adrl/.4DR1 ein2 plants retained high level of SAG. In addition, while adrl/ADRJ coil 

plants also maintained an increased level of free SA, adrl/ADRJ ein2 plants showed a 3-

fold increase compared to adri/ADRJ plants. In contrast, adrl/ADR1 nprl double 

mutants exhibited a 3- and 5-fold accumulation of SA and SAG respectively, compared 

to adri/ADRJ levels. Furthermore, adri/adri nahG double mutant does not accumulate 

high levels of SA nor SAG; this is due to the NahG transgene, which encodes an enzyme 

that converts SA into catechol. JA levels were also examined and only adrl/ADR1 nprl 

plants exhibited an increase in this metabolite to a level 3-fold greater than wild-type 

plants (Figure 4.13). Finally, ET production was measured and, as expected, adri/ADRi 

ein2 and adri/adri ein2 plants revealed a 2-fold higher ET level. All other adri double 

mutants did not exhibit increased ET production (Figure 4.14). 
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Figure 4.12 Measurement of SA and SAG levels in adri double mutants. 

Concentrations of SA and SAG in adri mutants and wild-type plants are represented in the 

left-side black and right-side grey columns respectively. The scale on the left side denotes the 

extent of SA concentration, whereas the amount of SAG is specified by the scale on the right 

side of the histogram. Error bars represent standard errors. 
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Figure 4.13 Measurement of JA levels in adri double mutants. 

The concentration of JA in wild-type control plants and adri double mutants. Error bars 

represent standard errors. 
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Figure 4.14 Production of ET in adri double mutants. 

Wild-type control plants, adri/ADRI and adri/adri double mutants were analysed for ET 

production. ET insensitive etrl mutant plants were included as control. Error bars represent 

standard deviations. 

Disease resistance in adri double mutants was then investigated. Double mutants were 

challenged with P. parasitica N00O2 and 10-day old adri/ADRI coil and 

adri/ADRJ nprl double mutants exhibited similar susceptibility as coil and nprl 

plants respectively (Figure 4.15). However, adri/ADRJ ein2 plants showed reduced 

fungal growth. Interestingly, 10-day old adri/adri nahG plants were more resistant 

than the immune-deficient nahG transgenic line. As described in the introduction, 2-

week-old adri seedling do not accumulate high level of ADRI transcripts and defence 

related genes; thus, 25-day-old adult plants were also challenged with P. parasitica 

(Figure 4.16). Only adrl/adrl nahG showed significant fungal infection, but to a 

lower extent than nahG transgenic plants. These results therefore suggested that ADRJ 

orchestrates resistance against P. parasitica in adult plants in a partially SA-dependent 

manner, but independently of JA or COIl, ET or EIN2 and NPR1. The apparent age-

dependent disease resistance was most likely due to the fact that ADRJ transcripts do 

not accumulate in Arabidopsis plants until 15 days after germination (Grant et al., 

2003). This conclusion is consistent with the fact that the onset of reduced stature and 

curled leaves was generally observed 2 weeks after germination, prior to which time 

adri plants were indistinguishable from wild-type. 
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Figure 4.15 Response of 10-day old adri double mutants to P. parasitica. 

10-day-old adri double mutants were challenged with a P. parasitica N00O2 conidiospores 

suspension of 1 X 06  spores per ml and the number of conidiophores per seedling was counted 

10 days post treatment. Col-0 wild type, adri/ADRI, nahG, nprl, eiri2 and coil plants were 

included as controls. Error bars represent standard errors. 
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Figure 4.16 Response of 25-day old adrl double mutants to P. parasitica. 

25-day-old adri double mutants were challenged with a P. parasitica N00O2 conidiospores 

suspension of 1x106  spores per ml and the number of conidiophores per seedling was 

counted 10 days post treatment. Col-0 wild type, nahG and adri/ADRI plants were included 

as controls. Error bars represent standard errors. 
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In addition, susceptibility to E. cichoracearum UED 1 was also tested in adri double 

mutants. In contrast to P. parasitica disease resistance results, only adri/ADRJ ein2 

and adrl/ADR] coil double mutants retained full resistance to E. cichoracearum 

(Figure 4.17). On the other hand, adri/ADRJ nprl plants showed an infection rate 

similar to that of wild-type plants, while adri/adri nahG double mutants were nearly 

as susceptible as nahG plants. Consequently, these results suggested that adr]-

mediated resistance against E. cichoracearum is dependent on SA, but only partially 

dependent on NPR I. 
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Figure 4.17 Response of adri double mutants to E. cichoracearum. 

Plants were challenged by gently dusting E. cichoracearum UED1 spores from the leaves of 

infected wild-type plants onto adri double mutants. Col-O, nahG and adr1fADR1 plants were 

included as controls. Plants were scored employing a disease index for visual fungal growth 7 

days after treatment. 
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Trypan blue and DAB staining analysis were performed employing adri double mutants 

to assess the contribution of distinct defence signalling pathways to the establishment of 

adrl-mediated microscopic cell death and H202  accumulation. Figure 4.18 shows that 

adrl-mediated cell death was maintained in all double mutants apart from adri/adri 

nahG. Similarly, high levels of H202  occurred in all double mutants apart from 

adri/adri nahG (Figure 4.19). These results suggested that a functional SA pathway is 

necessary for both adrl-niediated cell death and ROI accumulation. 
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Figure 4.18 Accumulation of microscopic cell death in adri doubles mutants. 

(a-c) Accumulation of cell death uncovered by trypan blue staining in a representative wild-type 

Col-0 leaf (a), adri/ADR1 leaf (b) adri/adri nahG (c), adri/ADR1 e1n2 (d), adri/ADR1 coil (e) 

and adrl/ADRI nprl plants (f). Magnification in each figure was lox. 
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Figure 4.19 Accumulation of H202  in adri double mutants. 
(a-f) Accumulation of H202  reported by 3,3-diaminobenzidine staining in representative leaves 

of wild-type (a), adrilADRi (b), adrifadri nahG (C), adri/ADR1 e1n2 (d), adri/ADRI coil (e) 

and adri/ADRI nprl plants (f). Magnification in each image was lOX. 

4.6 Controlled ADR1 expression establishes disease resistance without yield 

penalty 

Constitutive induction of ADRJ led to enhanced disease resistance but simultaneously 

affected plant development. Thus, we investigated whether the controlled expression of 

ADR] could orchestrate the establishment of resistance without affecting normal plant 

development and yield. This analysis was undertaken by employing a glucocorticoid-

regulated gene transcription system (Ayoama and Chua, 1997). Dr dihn Grant generated 

a TA::ADRJ construct which consists of the ADR1 gene under the control of a DEX-

inducible promoter (Figure 4.20). This construct was subsequentially transformed into 

wild type Arabidopsis plants carrying the PR1: :LUC reporter construct. 
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Figure 4.19 Accumulation of H202  in adri double mutants. 

(a-f) Accumulation of H202  reported by 33-diaminobenzidine staining in representative leaves 

of wild-type (a), adri/ADRI (b), adri/adri nahG (c), adrl/ADRI e1n2 (d), adri/ADRI coil (e) 

and adri/ADRI nprl plants (f). Magnification in each image was lox. 

4.6 Controlled ADRJ expression establishes disease resistance without yield 
penalty 

Constitutive induction of ADRJ led to enhanced disease resistance but simultaneously 

affected plant development. Thus, we investigated whether the controlled expression of 

ADRJ could orchestrate the establishment of resistance without affecting normal plant 

development and yield. This analysis was undertaken by employing a glucocorticoid-

regulated gene transcription system (Ayoama and Chua. 1997). Dr John Grant generated 

a TA::ADRI construct which consists of the ADR] gene under the control of a DEX-

inducible promoter (Figure 4.20). This construct was subsequentially transformed into 

wild type Arabidopsis plants carrying the PRI.-:LUC reporter construct. 
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Figure 4.20 The glucocorticoid-inducible system employed for the controlled expression 
of ADRi in plants. 

The schematic reproduction of the chimeric glucocorticoid-inducible system employed for the 
controlled, transient expression of ADRI in transgenic plants (TA::ADRI binary cassette). The 
same cassette deployed of ADRI sequence was used as control (TA:: empty vector). ADRI 
expression is regulated by the glucocorticoid activated promoter (6xGAL4UAS) and 3A denotes 

the pea rbcsS-A polyadenylation sequence. The glucocorticoid responsive transcription factor 
(GVG) is driven by CaMV35S, and E9 corresponds to the pea RBCS-E9 polyadenylation 
sequence. The hygromycin phosphotransferase (HPT) gene confers hygromycin resistance in 
plants (promoter and terminator not shown). 

Germination analysis of T2  and T3  lines, grown on MS plate containing hygromycin, 

identified more than 20 individual homozygous TA:.-ADRI lines. Preliminary 

characterisation suggested that most of these ADRI inducible lines exhibited equivalent 

features, thus only line 6.17 was used for further characterisation and it will be 

subsequentially referred to as TA.- ADRI. Similarly, only line 1.4, among the empty 

vector control lines, was used for further characterisation and it will be subsequentially 

referred to as TA::. Previous studies have reported that a high level of DEX treatment 

may trigger defence-related gene expression in plants (Kang et al., 1999). Transgenic 

lines were therefore sprayed with different DEX concentrations in order to achieve the 

most effective expression of ADRI in absence of any potential phyto-toxic consequences 

associated with DEX. TA:.-ADRI transgenic plants, but not TA.: control lines, exhibited 

moderate HR-like lesions 48 hours after treated with 11.iM DEX. None of the studies on 

DEX-induced gene expression system reported in the literature described any phyto-

toxic effects of such a low concentration DEX treatment. 

The luciferase (LUC) activity of DEX-treated plants was evaluated via an ultra low light 

Imaging camera. DEX-treated TA- ADRI plants exhibited high bioluminescence at 48 



hours after treatment compared to TA..' control plants (Figure 4.21). To confirm that the 

observed LUC activity corresponded to PR] accumulation, RNA analysis was 

performed. Expression of PR] transcript was verified to occur within two days (Figure 

4.23), consistent with the appearance of visual macroscopic clilorosis. Furthermore, 

control TA..' plants did not show PR] accumulation, confirming that the optimal Il.iM 

DEX treatment was non-phyto-toxic and did not induce defence gene expression. In 

addition, the kinetics of ADRI expression was investigated. Northern analysis revealed 

that ADRI transcripts were accumulated within 5 hours post DEX treatment (Figure 

4.22), earlier than the 50-hour post DEX treatment accumulation of PR] transcripts. 

LOW HIGH 

Figure 4.21 DEX treatment induced luciferase activity in TA::ADRI transgenic lines. 

(a-b) Ultra low light imaging was employed to assess LUC activity in TA::ADR1 (a) and TA:: (b) 

plants 50 hours after treatment with I tM DEX solution. Colour scale represents light intensity. 

TA:.' TA.':ADRI 

Figure 4.22 Kinetic analysis of the accumulation of ADRI and PRI transcripts. 

TA.-.-ADRI and TA:: plants were investigated by northern blot analysis for ADRI and PRI 

expression at given time in hours (h) after treatment with 1 iM DEX. R18 was used to control 
equal RNA loading and transfer. 
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According to the gene expression kinetic results, inducible ADRI plants were challenged 

with P. parasitica 50 hours after I or 0.4 M DEX treatment. As presented in Figure 

4.23, inducible TA:.- ADRI plants showed complete disease resistance, since no fungal 

growth could be detected. Moreover, DEX-treated TA:: control plants exhibited an 

infection rate analogous to that of wild-type plants. Transient expression of ADRI can 

therefore orchestrate disease resistance. 
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Figure 4.23 The ADRI inducible line showed resistance against P. parasitica. 

TA::ADRI transgenic plants and TA.': control lines were treated with a P. parasitica N00O2 
conidiospores suspension (1x106  spores per ml) 24 hours after DEX treatment. The number of 

conidiophores per plant was counted 10 days after challenge. Col-0 wild-type, BTH treated Cto-0 

and nahG plants were included as controls. Error bars represent standard errors. 

Finally, we investigated whether the adr]-mediated disease resistance alters plant 

production. Seeds, from adri mutants, constitutive ADRI overexpressing plants, ADRI 

inducible lines and wild-type control plants, were collected and weighted (Figure 4.24). 

As expected, adri and CaMV35S: :ADR1 plants that showed enhanced resistance 

exhibited a significant decrease in seed production. However, the seed yield of 

T,4: :ADRI plants following 1 or 0.4 M DEX treatment, which conferred disease 

resistance, was not significantly different to that of wild-type plants. In addition, the 

seed yield of DEX treated TA::, untreated TA::ADRI and TA:: lines were also 
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statistically equivalent to that of wild-type plants. Thus, the transient expression of 

ADRJ can convey disease resistance in the absence of significant yield penalty under the 

environmental conditions tested. 
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Figure 4.24 Transient expression of ADRI is not associated with yield penalty. 

Yield, reported as grams of seeds per plant, were determined employing 10 to 25 plants per line. 

Mutants, transgenic lines and control plants were grown in similar conditions. Histogram bars 

labelled with different letters indicate data that are significantly different (P > 0.95). Error bars 

represent standard deviations. 

4.7 Conclusions 

Previous analysis established that adri plants accumulated high level of PR], PDFJ.2 

and GST] transcripts. The expression of these defence-related genes has been previously 

reported to be induced by SA, JA/ET and ROT respectively. We therefore determined 

the concentration of SA, JA and SA in adr] plants. The defence metabolite profiling of 

adri mutant presented here suggest that constitutive .PRJ expression may be due to the 

presence of microscopic cell death region and high SA level in the mutant. Similarly, 

constitutive accumulation of H202  may play a major role in the GSTI constitutive 
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expression. Interestingly, these results indicate that neither elevated JA nor high ET 

production are necessary to trigger constitutive PDF1. 2 expression in adri mutants. 

adrl-mediated resistance to P. parasitica was reported previously (Grant et al., 2003). 

However, results presented here suggest that ADRI expression not only conveys 

resistance against this oomycete, but also against the cauliflower mosaic virus and E. 

cichoracearum, a biotrophic pathogen. In addition, adri lines constitutively expressed 

PDF1. 2, a key defence gene in resistance against necrotrophic fungal pathogens; 

however, adri plants did not exhibit resistance to the necrotrophic B. cinerea. 

Antagonistic action of SA- and JA-mediated defence pathways have been previously 

reported (Felton et al., 1999; Li et al., 2004) and the fact that adri plants exhibited 

slightly decreased JA levels may have resulted in increased susceptibility to B. cinerea. 

In spite of this, adri did not show enhanced disease susceptibility to B. cinerea. 

Analysis of the CaMV35S: :ADRJ transgenic lines verified that the magnitude of 

reduced stature, defence gene expression and disease resistance were proportional to the 

level of ADRI expression. Our results showed that all these features co-segregated. In 

addition, the rapid accumulation of ADRI transcripts following Pst(avrB) or 

Pst(avrRpt2) recognition significantly preceded the expression of SA-dependent marker 

PR! (Malamy et al., 1990; Metraux et al., 1990). Thus, the early accumulation of ADRI 

transcripts occurs before a significant increase in SA concentration. Exogenous SA or 

BTH treatment, however, highly induced both local and systemic transcription of ADRI. 

Therefore, SA-dependent defence signalling may function as a positive feedback loop, 

maintaining or increasing ADRI gene expression during the establishment of disease 

resistance both locally and systemically. 

Previous gene expression analysis in adri double mutants established that adri-

mediated PR] expression was SA- and NPRI-dependent (Grant et al., 2003). 

Complementary, disease resistance results presented here strongly suggested that adri-

mediated E. cichoracearum resistance was SA- and partially NPR 1-dependent, but ET-

and JA-independent. In contrast, adrl-mediated resistance against P. parasitica 

appeared to be dependent on SA, but NPR I-, ET- and JA-independent. Consistent with 
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these observations, cell death and ROI accumulation occurred only in adri double 

mutants exhibiting enhanced disease resistance. Furthermore, phytohormone 

quantification analysis in adri double mutants revealed that the disease resistance trait 

was generally associated with SA accumulation, which was necessary for ADRJ 

transcript accumulation. It is noteworthy that adri/ADRJ nprl plants showed high SA 

and SAG levels but failed to retain full disease resistance against E. cichoracearum, 

which may be due to the lack of accumulation of PR] and other SA-dependent genes in 

adri/ADRJ npr] double mutants. 

As reported in the introduction, the detrimental effect of constitutive disease resistance 

on plant development and yield detained the exploitation of transgenic disease resistance 

crops (Hammond-Kosack and Parker, 2003). Reduced yield is therefore one of the main 

restraints for the commercial exploitation of our knowledge in plant disease resistance. 

To potentially overcome this limitation, ADRJ inducible lines were generated and 

analysed. Results presented here suggested that transient ADRJ expression can trigger 

defence gene expression and convey disease resistance in the absence of reduced seed 

production. 
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5) The establishment of adri-mediated disease resistance is NIDR1-

independent and EDS1-dependent 

5.1 Analysis of adri ndrl and adri edsi double mutants 

As described in the introduction, EDS1 is required to establish disease resistance 

mediated by NBS-LRR proteins possessing a TIR domain located at the C-terminus 

portion of the protein (Feys etal., 2001). In contrast, NBS-LRR proteins lacking the TIR 

domain usually exhibit a C-terminal CC domain and their ability to trigger disease 

resistance is generally dependent on NDR1 (Aarts at el., 1998). To test whether the 

establishment of disease resistance mediated by the CC-NBS-LRR ADR1 (Grant et al., 

2003; Meyer et al., 2003) protein conformed with this general rule, adri ndrl and adri 

edsi double mutants were generated. 

5. 1.1 Generation ofadri ndrl and adr] edsi double mutant plants 

Pollen from adri plants was used to pollinate recessive, loss-of-function ndrl mutant 

(Aarts at el., 1998). Successful crossing was confirmed by BASTA selection on F1  

plants, since the activation tag construct inserted in adri contains the BAR gene, which 

conveys resistance to BASTA. Seeds were then collected from individual F1  plants and 

F2  lines were investigated for morphological phenotype and BASTA resistance. As 

presented in Table 5.1 and 5.2, segregation of the adri morphological phenotype was 

independent of ndrl, since all plants with a wild-type phenotype (- 26%) died after 

BASTA treatment, whereas all plants showing an adri phenotype (- 74%) were BASTA 

resistant. Allele specific ndrl PCR analysis of ten BASTA resistance lines identified 4 

independent adri/ADRI ndrl/ndrl lines and one adrl/adrl ndrl/ndrl double mutant. 

PCR was repeated on F3  plants, confirming these results. 

A similar approach was employed to generate adri edsi double mutants; edsi is also a 

recessive, loss-of-function mutation (Feys et at., 2001). Only a minority (30%) of the F2  

plants exhibiting a wild-type phenotype were BASTA susceptible (Table 5.1 and 5.2), 
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suggesting that the edsi mutation suppressed the adri phenotype. To investigate this 

possibility, allele specific edsi PCR-based marker analysis was carried out. Sixteen 

BASTA resistant plants expressing an ac/r] phenotype were tested. Statistically, if adri-

mediated reduced stature was EDS 1-independent, 25% of these plants (approximately 4) 

should be homozygous for the loss-of-function edsi mutation. However, none of the 

BASTA resistance plants expressing an adri phenotype were homozygous for edsi. F2  

plants homozygous for edsi were only identified in BASTA resistant plants exhibiting 

wild-type morphology. These results strongly suggest that the adri morphological 

phenotype is EDS 1-dependent. 

Line Total number BASTA BASTA 
of plants susceptible resistant 

adri ndrl 230 60 170 
(26.1%) (73.9%) 

adri edsi 341 
76 265 

(22.3%) (77.7%) 

adri Ler 460 
122 336 

(27.0%) (73.0%) 

Table 5.1 Segregation of BASTA resistance in F2  adri double mutants. 

The total number of adri double mutants F2  plants investigated for BASTA resistance are 

reported. Values indicated in the BASTA susceptible and BASTA resistance columns represent 

the number and percentage of plant that did not survive BASTA treatment and BASTA resistant 

plants respectively. 

Total BASTA Wild-type Weak adri 
Intermediate  

Severe adrl Line 
resistant plant phenotype phenotype 

adri 
phenotype 

phenotype 

adri ndrl 170 0 0 129 41 
(0%) (0%) (75.9%) (24.1%) 

adri edsi 265 152 25 85 3 
(57.4%) (9,4%) (32.1%) (1.1%) 

adri Ler 336 79 139 106 12 
(23.5%) (41.4%) (31.5%) (3.6%) 

Table 5.2 Morphological phenotype of F2  BASTA resistant adri double mutant plants. 

F2  plants were classified in one of the four morphological groups. Both number and percentage 

of plants belonging to each class are shown. 
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Several Arabidopsis mutants have been reported, however, to show different levels of 

penetrance in different Arabidopsis accessions (Dietrich, personal communication; 

Aboul-Soud and Loake, unpublished data). The edsi mutant was isolated in Landsberg 

erecta (Ler) accession, whereas adri was selected in a Colombia (Col-0) accession; 

whether the adri mutation was fully penetrant in the Ler accession was unknown. To 

address this question, adri mutants were employed to pollinate Ler plants, F, lines were 

selected by BASTA treatment and seeds collected from individual lines. Analysis of F2  

plants showed the expected 3:1 BASTA resistance segregation (Table 5.1); however, 

only 75% of the BASTA resistant plants exhibited an adri phenotype (Table 5.2). 

Therefore, the penetrance of adri in Ler accession was approximately 75%. In this 

context, the EDSJ-dependent adri phenotype observed in adri eds] double mutants 

could represent a consequence of the fact that adri was not fully penentrant in Ler 

accession. The analysis of 30 F3  lines showed that each homozygous adri/adri Ler line 

exhibited, to different extent, an adri phenotype. Allele specific PCR analysis failed to 

identify any adri eds] line simultaneously showing an adri phenotype and homozygous 

for the eds] mutation. Moreover, none of the analysed adri/adri edsi/eds] lines 

showed an adri phenotype, whereas all adri/adri Ler plants exhibited an adri 

phenotype. These results confirm that the adri phenotype is EDSJ-dependent. 

5.1.2 Characterization ofadrl ndrl and adri edsl double mutants 

To investigate whether the expression of ADRI transcripts paralleled the requirement for 

EDSJ observed for adrl-mediated reduced stature, ADRJ analysis was assessed. The 

accumulation of ADRJ transcripts was high in both adri/ADR1 ndrl and adri/adri ndrl 

plants, whereas ADRJ accumulation was considerably reduced in adrl/adrl edsi 

mutants and nearly undetectable in adri/ADRI eds] plants (Figure 5.1). Consistent with 

ADR1 expression, adri ndrl plants showed enhanced expression of both PR] and GSTJ, 

while adri eds] mutants failed to accumulate transcripts of these genes. Furthermore, 

adri/adri ndrl showed greater defence gene expression compared to that of adri/ADRJ 

ndrl plants, consistent with the level of PR] and GSTI gene expression previously 

observed in hemizygous and homozygous adri plants (Grant et al., 2003). 
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To address whether increased expression of defence genes conferred disease resistance 

in adri ndrl double mutants, plants were tested for disease resistance against P. 

parasita, since adri conveys full resistance to this oomycete. Results showed that adri 

ndrl mutants were more resistant to P. parasitica than wild-type plants, whereas adri 

eds] double mutants were as susceptible as eds] plants (Figure 5.2). These data suggest 

that adrl-mediated resistance against P. parasita is NDRJ-independent but EDSJ-

dependent. Similar results were observed following challenge of adri ndrl and adri 

eds] double mutants with E. cichoracearum and CaMV (Figure 5.3 and 5.4 

respectively). In summary, the adrl-mediated morphological phenotype, defence gene 

expression and disease resistance appeared NDR 1-independent but EDSJ -dependent. 

5.2 Generation of adri rarl and adri sgtlb double mutants 

Recently, RARJ and SGTJB, two genes required in signalling NBS-LRR-mediated 

disease resistance, have been isolated and characterised (Muskett et al., 2002; Tor et al., 

2002; Tornero et al., 2002). A number of CC-NBS-LRR (CNL) proteins require RARI 

to induce disease resistance (Tornero et al., 2002); adri rarl double mutants have 

therefore been generated to investigate whether adrl-mediated resistance was dependent 

on RAR1. 

5.2.1 Generation of adri rarl double mutant 

A number of ran] alleles have been isolated from EMS screens (Muskett et al., 2002; 

Tornero et al., 2002). The ran-JO allele is a null mutation caused by a 5 base pair 

deletion, whereas only a one base pair change was responsible for all the remaining ran 

alleles (Muskett et al., 2002; Tornero et al., 2002). F2  progeny from an adri rarl cross 

would therefore be easily evaluated employing a ran-JO allele specific PCR analysis. 

Pollen from adni mutants was used to pollinate ran-JO plants, F1  lines were treated 

with BASTA and seeds from individual plants collected. Allele specific rarl PCR 
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Figure 5.1 Gene expression analysis in adri ndrl and adri edsi plants. 

Northern blot analysis of adrl double mutants was performed to investigate ADRI, PRI 

and GSTI expression. Cot-U, adri/ADRI and adriladri plants were included as control. 

adri/ADRI Ler represents adri heterozygous mutants in Ler accession. The RNA in 

each line was stained with methylene blue to confirm equal loading and transfer. 
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Figure 5.2 The adrl-mediated resistance against P. parasitica is NDRI-independent 

and EDSI-dependent. 

Plants were treated with a P. parasitica suspension of 1x106  conidiospores per ml and the 

number of conidiophores per plant was counted 10 days after challenge. Col-0 wild-type, 

adri/ADRI, nahG, ndrl and ed.sl plants were included as controls. 
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Figure 5.3 The adrl-mediated resistance against E. cichoracearum is NDRI-

independent but EDSI -dependent. 

Plants were challenged by gently dusting E. cichoracearum spores from the leaves of infected 

wild-type plants onto adri double mutants. Col-0, Ler, adr1IADR1, ndrl and edsi plants were 

included as controls. Plants were scored employing a disease index for visual fungal growth 7 

days after E. cichoracearum treatment. 
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Figure 5.4 The adrl-mediated resistance against CaMV is NDRI-independent but EDSI-

dependent. 

One of the first two leaves of 10-day-old seedling was scrubbed with a CaMV suspension of 50 

ng per ml. Plants were scored using a disease index for visual symptoms development 30 days 

after CaMV challenge. Col-0, adri/ADRI, ndrl and edsi plants were included as controls. 
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analysis of T2 plants and investigation of adri rarl double mutants will be undertaken 

by another student. 

5.2.2 Generation of an adri sgtlb double mutant 

SGTIB is also required by several NBS-LRR proteins to establish disease resistance; 

both CNL and TNL (TIR-NBS-LRR) genes exhibited dependence on SGT1B (Tor et al., 

2002). In order to address whether adrl-mediated defence pathway was SGT1B-

dependent, an adni sgtlb double mutant was generated. Three sgtlb alleles have been 

isolated and all of them consisted of a single base pair mutation (Tor et al., 2002). The 

sgtlb-3 mutation was, however, the only allele that completely abolished SGT1B 

expression (Tor et al., 2002). Hence, pollen from adri plants was employed to fertilise 

sgtlb-3 mutants, F1  plants were selected by BASTA treatment and seeds from individual 

lines collected. Allele specific sgtlb PCR analysis of F2  plants and investigation of adni 

sgtlb double mutants will be undertaken by another student. 

5.3 Discussion 

Several studies have established that NBS-LRR gene products signal through defence 

pathways that require either EDSI or NDR1 (Muskett et al., 2002; Tor et al., 2002; 

Tomero et al., 2002). Generally, TNL-mediated disease resistance requires EDS1, while 

NDR1 is usually necessary to establish CNL-mediated disease resistance (Muskett et al., 

2002; Tor et al., 2002; Tomero ei. al., 2002). As described previously, exceptions to this 

general rule have been reported (McDowell et al., 2000; Bittner-Eddy and Beynon, 

2001); however, none of the CNL proteins characterised to date has been shown to be 

EDS 1-dependent. Surprisingly, the phenotypic appearance of adri ndr] and adri eds] 

plants suggested that the characteristic adri phenotype was retained in adri ndnl but not 

in adri edsi plants. Accordingly, gene expression analysis showed substantial ADRI, 

PRJ and GSTJ transcripts accumulated in adri ndnl plants, but not in adni edsi plants. 

Consistently, adri ndrl plants, but not adri edsi mutants, exhibited adr]-mediated 
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resistance against P. parasitica, E. cichoracearum and CaMV. In summary, adri edsi 

lines showed wild-type morphology, a disease response similar to that of wild-type 

plants and very low expression of ADR1 and defence genes. In contrast, adri ndrl 

double mutants exhibit the characteristic adri phenotype, increased expression of 

defence genes and enhanced disease resistance. Thus, ADR1 may be the first example of 

CNL gene product to signal through EDS1 but independently on NDR1. 

EDS 1, however, contributes to the establishment of basal disease resistance, disease 

resistance mediated by R gene products and is also required for the amplification loop 

that potentates SA-dependent defence responses (Parker et al., 1996; Feys et al., 2001). 

The overexpression of ADRJ can induce the transcription of the defence gene PDFI.2, 

whose expression is not regulated by SA nor EDS1 (Grant et al., 2003; Falk et al., 1999). 

PDF1.2 expression will therefore be studied in adri edsi mutant plants. In case 

constitutive PDFI.2 expression is observed, this analysis may suggest that adrl-induced 

expression of defence genes does not require EDSJ and therefore that ADR1 can signal 

independently from EDS]. 

In addition, to validate that ADRI signals through EDS I to establish disease resistance, 

the TA::ADRI line will be crossed with an edsi knock-out line isolated in Col-0 

accession. The knock-out lines disrupted in the EDSJ gene in a Co 1-0 accession have 

been obtained from the SALK knock-out resource. The isolation and analysis of edsi 

TA::ADRJ plants and edsi TA:: control lines will be carried out by another student. The 

investigation of immediate gene expression in edsi TA: :ADRJ plants and eds] TA:: 

lines following DEX treatment may uncouple the function of EDSl in early R protein 

signalling responses with the role of EDSI within a amplification loop required for the 

establishment of basal resistance. 
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6) Drought tolerance established by enhanced expression of ADRJ 

requires salicylic acid, EDS1 and ABI1. 

6.1 Enhanced expression of ADRJ conveys tolerance to drought stress. 

The refined regulation of transcription is thought to coordinate the acclimation of plants 

to challenging environmental conditions (Seki et al. 2002a; Schenk et al. 2000; Tao et al. 

2003). Stress research has traditionally focussed on plant responses to a single 

environmental challenge. In the field, however, plants are concurrently exposed to 

various environmental insults, hence requiring the synchronized engagement of multiple 

signalling pathways, connected within a complex network (Xiong et al., 2002). When 

considered in isolation, plant response to dehydration stress is a relatively well-

characterised phenomenon (Hasegawa et al. 2000; Shinozaki and Yamaguchi-Shinozaki, 

2000; Xiong et al. 2002). The existence of at least two abscisic acid (ABA)-dependent 

and two ABA-independent signalling pathways in response to drought is well-

established (Giraudat et al. 1994; Shinozaki and Yammaguchi-Shinozaki, 2000; Xiong 

et al. 2002). These pathways have been extensively described in Chapter 1. 

6.1.1 adri plants exhibited drought tolerance 

During the growth and maintenance of adri plants, this mutant line appeared more 

drought tolerant than wild-type plants. Analyses to further investigate this observation 

were therefore carried out. Wild-type Col-0 plants were severely withered following 

water withdrawal for 11-days, while both hemizygous adri/ADRJ and homozygous 

adri/adri plants remained healthy. After 15-days without water, all wild-type plants had 

died, however, both adri/ADR1 and adriladri plants were all still viable, although 

exhibiting signs of wilting. On day-16, wild-type and adri plants were re-watered and 

scored for survival the following day (Figure 6.1a). Approximately 100% of adri plants 

survived, whereas only 6% wild-type Col-0 plants were still viable (Figure 6.1a). 
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6.1.2 Enhanced expression ofADRi confers drought tolerance 

In order to confirm the drought tolerant phenotype of adri plants, we examined selected 

lines containing a CaMV35S: :ADR1 transgene exhibiting significant differences in the 

magnitude of ADRJ transcript accumulation. The 35S::ADRJ line 10 showed high levels 

of ADRJ expression; line 36 an intermediate level; and no ADRJ transcripts were 

detected in line 23 plants following gene expression analysis (Chapter 4, Figure 4.9). 

Both 35S::ADRJ line 10 and 36 plants exhibited significantly increased drought 

tolerance compared to wild-type Col-0 plants, whereas the line 10 plants exhibited 

greater drought tolerance than line 36 plants (Figure 6. la). In contrast, the line 23 plants, 

which failed to accumulate ADRJ transcripts, did not show significant difference to 

wild-type plants with respect to drought tolerance (Figure 6. la). 

6.1.3 Conditional expression ofADRl is sufficient to trigger drought tolerance 

Several Arabidopsis mutants have been uncovered that, like adri, exhibit broad-

spectrum disease resistance. Response of cprl (Bowling et al. 1994), cirl (Murray et al. 

2002) and cir2 (Tani, 2004) mutant lines to dehydration stress was therefore compared 

to that of adri plants. The survival rate for adri plants was 99%, whereas only 4%, 3% 

and 8% of cprl, cirl and cir2 plants respectively, remained viable following 15 days 

without water (Figure 6.1b). Furthermore, only 9% of wild-type Col-0 plants sprayed 

with the SAR inducing chemical benzothiadiazole (BTH) survived (Gorlach et al., 1996) 

(Figure 6.1b). This suggested that drought tolerance was not a general feature of 

Arabidopsis plants exhibiting broad-spectrum disease resistance. 

As adri mutant plants were smaller than wild-type plants, we investigated if the drought 

tolerant phenotype expressed by this mutant line was a consequence of its reduced 

stature. To address this issue, we employed the TA::ADRJ transgenic line, described in 

Chapter 4, expressing ADRJ under the control of a glucocorticoid-mediated transcription 

induction system (Aoyama and Chua, 1997). Four week-old TA::ADR1 plants, which 

were physically indistinguishable from wild-type plants, were sprayed with DEX and 

scored for survival following water withdrawal for 15 days (Figure 6.1c). Only 5% of 
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Figure 6.1 Plant survival rate following 15-days of water withdraw. 

Plant survival rate was calculated following 15 days of water withdraw. Col-O wild-type plants, 

hemizygous and homozygous adri mutants were always included as controls. The experiment 

was repeated three times with similar results. Error bars represent standard errors. 

Plant survival rate of 35S::ADRI lines following 15 days of water withdrawal. 

Exposure of BTH-treated wild-type plants, cprl, cirl and c1r2 mutant lines to 15 days of 

water withdrawal, with the survival rate shown per each given plant line. 

Plant survival rate of DEX-treated TA::ADRI and TA:: plants. Water-treated TA::ADRI and 

TA:: controls were also included. 
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Col-0 wild-type plants remained viable in contrast to more than 95% of both adri/adri 

and adri/ADRJ plants (Figure 6.1c). The DEXreated TA::ADRJ line showed a survival 

rate of 65%, while only 4% of plants containing an empty vector cassette, TA::, survived 

(Figure 6.1c). As control, TA::ADRJ and TA:: plants were sprayed with water and failed 

to show drought tolerance (Figure 6.1c). The conditional expression of ADRJ can 

therefore convey significant drought tolerance in the absence of any reduction in plant 

stature. 

6.1.4 Transpiration rate in adri plants 

Stomata closure in response to drought stress is an important survival strategy because it 

limits water loss through reduced transpiration (Leung and Giraudat, 1998). A decreased 

transpiration rate might therefore contribute to the establishment of drought tolerance in 

adrl plants. To investigate this possibility, the fresh weight loss of detached wild-type 

and adri plants was evaluated and their transpiration rate determined (Kang et al., 

2002). At five hours post detachment, adri plants exhibited a 38% decrease in fresh 

weight, not significantly different from the 36% decrease of Col-0 plants (Figure 6.2). In 

contrast, the rate of weight loss in the ABA-insensitive abil plants was 69% at five 

hours post detachment (Figure 6.2). Therefore, decreased rate of water loss does not 

appear to contribute to the establishment of drought tolerance in adri plants. 
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Figure 6.2 Transpiration rate of adri mutant line 

Transpiration rate of 4-week-old soil grown Cot-0, abil and adri plants is presented. The 

transpiration rate was calculated as the relative loss of weight throughout a period of 5 hours. 
Data points represent averages of duplicate experiments, with standard errors shown as bars. 
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6.2 Abiotic cross-tolerance in adri plants 

It has been previously reported that some transgenic plant lines show tolerance to 

multiple environmental stresses (Roxas et al. 1997; Kasuga et al., 1999; Bowler and 

Fluhr, 2000; Chinnusamy et al., 2004), a phenomenon termed cross-tolerance. To 

examine if adri plants exhibited cross-tolerance, the response of this mutant line to 

additional abiotic insults  was investigated. 

6.2.1 Response ofadrl to heat stress 

Heat tolerance was examined by determining the survival rate at given times following 

exposure to a temperature of 42 (Larkindale and Knight, 2002). The survival rate of 

both hemizygous and homozygous adri plants was indistinguishable from that of wild-

type Col-0 plants following either 9 hours or 11.5 hours exposure to a temperature of 

42C (Figure 6.3a). After 16 hours at 42 C, however, the survival rate of both 

hemizygous and homozygous adri plants was significantly less than that of Col-0 

plants. Hence, adri lines may show a small increased sensitivity to heat stress. To test 

this hypothesis, the heat response in TA::ADRJ and TA:: plants was also examined 

(Figure 6.3a). The conditional expression of ADRJ in the TA::ADRJ line was found to 

convey significant heat sensitivity in the absence of any reduction in plant stature. 

6.2.2 Response of adr 1 to heavy metal and freezing stresses 

We also examined the response of adri plants to heavy metals. After exposure to an 

increasing gradient of CuSO4  concentrations (Song et al., 2003), the survival rate of 

hemizygous and homozygous adri plants was indistinguishable from that of Col-0 

plants (Figure 6.3b). A similar result was obtained following exposure to an increasing 

gradient of CdCl2  concentrations (Song et al., 2003) (Figure 6.3c). Therefore, neither 

adri/ADRJ nor adri/adri plants exhibited either increased tolerance or sensitivity to 

heavy metal stress. In a similar fashion, adri plants also failed to exhibit significant 

tolerance to freezing (Kasuga et al., 1999) (Figure 6.3d). 
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Figure 6.3 adrl plants do not show cross-tolerance 

Exposure of wild-type Col-0 and adri plants to thermal stress. Following a gradient of 

increasing temperate, plants were maintained at 42°C for 9, 11.5 or 16 hours, The survival rate 

for Col-0 (U), adri hemizygous (U), adri homozygous (111), DEX-treated TA:: (E) and DEX-

treated TA::ADRI (U) plants for a given time of exposure are shown. 

The survival rate of Col-O, hemizygous and homozygous adri plants following treatment 

with an increasing concentration gradient of CuSO4. 

Exposure of Col-0, hemizygous and homozygous adri plants to an increasing concentration 

gradient of CdC12, with the survival rate shown for each given plant line. 

The survival rate of Col-0, hemizygous and homozygous adri plants following 5 hours at 

freezing temperature, as described in experimental procedures 

Experiments were repeated three times, showing similar results. Data points represent 

averages, with standard errors shown as bars. 
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6.2.3 Response of adrl plants to salinity 

To examine the response of adri plants to NaCl stress, this line was germinated on a 

range of NaCl concentrations from 0 to 200 mM (Figure 6.4). Germination of wild-type 

Col-0 and adri plants was not affected by NaCl concentrations of 90 mM or less. 

However, the germination rate of both Col-O and adri plants were significantly reduced 

at concentrations of 100 mM NaCl or greater; germination was completely inhibited at 

140 mM NaCl (Figure 6.4). These results showed that the germination of adri plants 

was undistinguishable to that of wild-type plants and adri mutants did not exhibit either 

NaCl resistance or hypersensitivity. 

The expression of ADRJ gene was relatively weak in adri seedlings (Grant et al. 2003), 

therefore the response of 4-week old adri plants to a range of NaCl concentrations was 

also examined. Adult adri plants were strikingly hypersensitive to NaCl, with 

homozygous adri plants more sensitive than hemizygous plants (Figure 6.5). For 

example, at 150 mM NaCl, all adri/adri plants died, while 12% of adri/ADRI plants 

survived. In contrast, the survival rate of Col-0 plants was 92%. Similar results were 

obtained following conditional expression of ADRJ in the TA: :ADR1 line. In this case 

the rate of survival was 47% for DEXreated TA: :ADR1 plants compared to 88% for 

DEeated TA:: control plants (Figure 6.5). 

The response of adult adri plants to KCl was also investigated in an equivalent set of 

experiments. Analogous to the response to NaCl, adri plants also showed 

hypersensitivity to KCI (Figure 6.5). Again, homozygous adri plants were more 

sensitive than hemizygous adr] plants. Furthermore, the TA: :ADRJ but not the TA:: line 

was also hypersensitive to KCI (Figure 6.5). To investigate if the observed 

hypersensitivity to either NaCi or KCI was ionic or osmotic in nature, we examined the 

response of adri plants to a concentration of sorbitol that provided a similar osmotic 

pressure (Figure 6.5). The response of both adrl/AJ)R1 and adri/adri plants to sorbitol 

were indistinguishable from Col-0 plants. The response of adri plants to both NaCl and 

KCI therefore appeared to be ionic in nature. 
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Figure 6.4 Impact of NaCl on the germination of Col-O and homozygous adri plants. 

Col-0 and adri seed were sown in MS plates containing the indicated concentration of NaCl. 

The germination rate is shown for each plant line. The experiments were repeated twice with 

similar results. 

Figure 6.5 Response of adri plants to salt and osmotic stresses. 

Effect of NaCl treatment, as described in experimental procedures, on 4-week-old soil grown 

Col-0 plants, heterozygous and homozygous adri lines. 

The survival rate in response to NaCI treatment for Clo-0 plants, adri, DEX-treated 

TA::ADRI and DEX-treated TA:: lines. 

Impact of KCI treatment, as described in experimental procedures, on Col-0 plants, adri, 

DEX-treated TA::ADRI and TA:: lines. The survival rate for each plant line is shown. 

The survival rate of 4-week-old, soil grown Col-0 plants and adri lines to sorbitol 

treatment, as described in experimental procedures. 

Each experiment was repeated three times with similar results. Data points represent 

averages, with standard errors shown as bars. 
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6.3 Drought responsive gene expression in adri plants 

Drought stress promotes a significant reprogramming of plant transcription (Seki et al. 

2002a; Seki et al. 2002b), we therefore examined if adrl plants constitutively expressed 

key abiotic response genes. The expression of the cold-inducible DREBJA gene was not 

detected in Col-O wild-type plants, hemizygous or homozygous adrl lines (Liu et al., 

1998) (Figure 6.6). In contrast, the expression of the drought-responsive DREB2A gene 

was detected in adri/adri plants but not in adri/ADRI plants (Liu et al., 1998) (Figure 

6.6). adrl plants were also examined for the expression of the ABA-dependent and 

ABA-responsive genes RD22 and RD29A respectively (friaguchi-Shinozaki and 

Shinozaki, 1994; Abe et al. 1997). In contrast to DREB2A, RD22 or RD29A transcripts 

were not up-regulated in either hemizygous or homozygous adri plants (Figure 6.6). 

Equivalent to DREB2A regulation, the expression of both RD29A and RD22 increased in 

thought stressed Col-0 plants. In contrast, the accumulation of the cold-responsive 

DREBJA gene was not detected in drought stressed wild-type plants (Figure 6.6). 

6.3.1 Drought responsive gene expression in CaMT'35S::ADR1 and TA::ADR1 

transgenic lines 

To confirm these results, we examined the expression of these marker genes in the 

CaMV35S::ADRJ lines, employed to transgenically reconstruct the adri phenotype. The 

extent of DREB2A transcript accumulation correlated with the strength of ADRJ gene 

expression. As presented in Figure 6.7, 35S::ADRJ line 10, which strongly expressed 

ADRJ, showed high accumulation of DREB2A transcripts. In contrast, DREB2A 

expression was reduced in line 36 and undetectable in line 23, in which the accumulation 

of ADR1 transcripts was reduced and absent respectively (Figure 6.7). 
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Figure 6.6 Analysis of abiotic gene expression in adri lines. 

Expression analysis of DREBIA, DREB2A, RD29A and RD22 gene in Col-O wild-type, 

drought-stressed Col-O, adri hemizygous and homozygous lines. The RNA in each lane of 

the blots was stained with methylene blue to confirm equal loading and transfer. 
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Figure 6.7 Analysis of abiotic gene expression in 35S::ADRI lines. 

Accumulation of ADRI, DRE82A, BREB2A, RD29A and R022 transcripts in wild-type Col-O, 

drought-stressed Col-O and selected CaMV35S::ADRI transgenic lines. The RNA in each 

lane of the blots was stained with methylene blue to confirm equal loading and transfer. 
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The possibility that chronic effects caused by the adri mutation might result in indirect 

activation of DREB2A gene expression was also tested employing the TA: :ADRJ 

transgenic line. The exogenous application of DEXo this line resulted in DREB2A 

transcript accumulation within 50 hours; whereas no DREB2A transcripts were detected 

in DEXreated TA:: control plants (Figure 6.8). The expression of DREBJA, RD29 or 

RD22 genes were not detected in the CaMV35S::ADRJ lines or the DEXreated 

TA::ADRJ plants, confirming the results obtained from the gene expression analysis of 

adri plants. 

The constitutive expression of a number of key defence-related genes and the 

subsequent establishment of disease resistance in adri plants is dependent upon elevated 

SA levels (Grant et al. 2003). We therefore examined whether the expression of the 

DREB2A gene was also SA-dependent. The application of benzothiadiazole (BTH), a 

functional analogue of SA (Gorlach et al. 1996), to wild-type Col-0 plants triggered 

significant accumulation of DREB2A and weak accumulation of RD29A transcripts. In 

contrast, the transcription of neither DREBJA nor RD22 was detected (Figure 6.9). 
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Figure 6.8 Analysis of abiotic gene expression in TA:: and TA::ADRI lines. 

Gel blot analysis of ADRI, DREB2A, DREB2A, RD29A and RD22 gene expression in Col-0, 

drought-stressed Col-0 plants and in transgenic lines containing the TA:: or TA::ADRI 

transgenes. DEX + represent plants 50 hours post 1 iM DEX treatment, while DEX - 

represents untreated plants. The RNA in each lane of the blots was stained with methylene 

blue to confirm equal loading and transfer. 

Figure 6.9 Analysis of abiotic gene expression post BTH treatment. 

Accumulation of DREBIA, DREB2A, RD29A and R022 transcripts in wild-type Col-0, nahG 

and nprl mutants, drought-stressed Col-0, wild-type plants treated with 300 ptM BTH, add 

lines, adri nahG and adri nprl double mutant plants. The RNA in each lane of the blots was 

stained with methylene blue to confirm equal loading and transfer. 
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6.4 Response of adri double mutants to drought stress 

To further analyse adrl-activated signalling, the response of a panel of adri double 

mutants to drought stress was investigated. These mutant lines were either hemizygous 

or homozygous for adri and also contained one of the following mutations: ein2 

(Guzman and Ecker, 1990), which conveys ethylene (ET) insensitivity; ndrl (Century et 

al. 1997), required for CC-NIBS-LRR signalling; edsi (Parker et al., 1996), required for 

TIR-NBS-LRR signalling; coil (Feys et al. 1994), which conveys jasmonate (JA) 

insensitivity; and, abil (Koomneef et al. 1984), which conveys ABA insensitivity. 

Additional adri lines contained either the nahG transgene, which depletes SA (Delaney 

et al. 1994) or the nprl mutation, which conveys insensitivity to SA (Cao et al. 1994). 

These mutant lines, apart from adri abil, have been described in Chapter 4 and 5. 

The abil mutation confers ABA insensitivity (Koornneef et al. 1984); adri abil double 

mutants were therefore germinated and selected on ABA plates. The reduced stature of 

adri/adri abil and adri/ADRJ abil plants paralleled that of hemizygous and 

homozygous adri mutant lines. Furthermore, ADRJ gene expression in adri abil plants 

is equivalent to that observed in hemizygous and homozygous adri plants (Figure 6.11). 

6.4.1 Drought tolerance in adri double mutant plants 

This panel of double mutants were scored for their survival rate following 15 days of 

water withdrawal (Figure 6.12). Homozygous adri plants containing either a nahG 

transgene, edsi or abil mutations exhibited a survival rate of 88%, 72% and 70% 

respectively. This compared to a survival rate of approximately 100% for homozygous 

adri plants. The effects of the nahG transgene, edsi or abil mutations were more 

pronounced in hemizygous adri plants, where the survival rate was decreased to 31%, 

23% and 5% respectively (Figure 6.12). In contrast, the nprl, ndrl, ein2 or coil 

mutations failed to show any significant impact on the survival rate of either hemizygous 

or homozygous adrl plants. Therefore, SA, EDS1 and ABI1 appear to be required for 

the establishment of adrl-mediated drought tolerance, whereas NPR1, NDRI, EIN2 and 

COIl are dispensable. 
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Figure 6.11 Expression of ADRI gene in adri abil mutant lines. 

Accumulation of ADRI transcripts was examined in wild-type Col-O, adri/ADRI, adri/adri and 

hemizygous and homozygous adri abil mutant lines. The RNA in each lane of the blots was 

stained with methylene blue to confirm equal loading and transfer. 
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Figure 6.12 Drought tolerance of adri double mutant lines. 

The survival rate of adri homozygous and hemizygous double mutant lines following 15 days 

of water withdrawal. Each data point represents the mean of duplicate experiments, with 

standard errors shown as bars. 
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6.4.2 Drought responsive gene expression in adri nahG and adri nprl double mutants 

To investigate further the putative role of SA in adrl-mediated drought tolerance, 

expression of drought-responsive genes was also examined in homozygous adri plants 

containing a nahG transgene and the nprl mutation (Figure 6.9). DREB2A gene 

expression was abolished in adri/adri nahG plants (Delaney et al. 1994), which 

depletes SA. However, in an adri/adri nprl double mutant, DREB2A expression was 

unaffected. Plants possessing the nprl mutation are insensitive to SA (Cao et al. 1994). 

Interestingly, in adri/adri nahG plants significant DREBJA and RD29A but not RD22 

transcripts were detected, whereas the induction of RD29A but not DREBJA was 

abolished in adri/adrl nprl plants (Figure 6.9). 
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6.5 Discussion 

An activation tagged allele of adri exhibited both broad-spectrum disease resistance 

(Grant et al. 2003) and significant drought tolerance. To our knowledge this is the first 

example of an Arabidopsis mutant to simultaneously express both of these key 

agricultural input traits. Importantly, this does not appear to be a general feature of 

Arabidopsis mutants that show broad-spectrum disease resistance, because cirl (Murray 

et al. 2002), c1r2 (Tani, 2004) or cprl (Bowling et al. 1994) plants, which constitutively 

express SAR, do not exhibit increased drought tolerance. Therefore, this phenomenon 

may be specific for ADRJ or a limited number of R gene signalling pathways. Recent 

reports have suggested possible connections between the establishment of disease 

resistance and drought tolerance. However, this topic will be extensively discussed in 

Chapter 9, whereas only the adrl-mediated drought tolerance will be discussed here. 

Interestingly, adri alleles do not appear to convey cross-tolerance against other abiotic 

stresses. Adult adri plants exhibited enhanced tolerance to dehydration, while showing 

increased sensitivity to thermal stress and hypersensitivity to NaCl. Therefore, adri 

activated signalling may antagonise signal transmission through other abiotic pathways. 

Expression analysis of stress marker genes in adri lines provided insights into this 

signal cross-talk. In adri, CaMV35S: :ADRJ and DEXtreated TA: :ADR1 plants, 

significant DREB2A transcript accumulation was detected. In contrast, the expression of 

DREBJA, RD29 or RD22 genes was not observed in any of these lines. The ABA-

independent, dehydration responsive signalling pathway, marked by DREB2A 

expression, therefore appeared to be engaged in these plants. However, there was no 

evidence for the activation of the signalling pathways that orchestrate the ABA-

independent expression of DREBJA and the ABA-dependent induction of RD22 and 

RD29A. The RD29A promoter contains a DRE motif, which is a specific binding site for 

DREB2A. However, the accumulation of DREB2 transcripts in adri lines did not result 

in activation of RD29A expression. This might reflect the requirement of DREB2A for a 

dehydration induced, post-translational modification (Liu et al. 1998). The absence of 
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RD29A expression in adri lines suggested this modification step may not occur in adri 

plants. 

Broad-spectrum disease resistance is established in adri plants via a SA-dependent 

mechanism (Grant et al. 2003). Gene expression analysis revealed that DREB2A 

transcripts were induced in Col-0 plants following exogenous application of the SA 

analogue BTH. In contrast, no transcripts for either DREBJA or RD22 were detected in 

BTH-treated plants. RD29A transcripts accumulated only weakly, supporting the results 

from a recent study (Borsani et al. 2001). In adri nahG double mutants, where 

endogenous SA was depleted, DREB2A transcript accumulation was abolished. This 

observation suggests that DREB2A expression in adri plants may be mediated by SA. 

While a functional NPR1 protein is required for the expression of many SA regulated 

defence genes (Cao et al. 1994), DREB2A transcript accumulation was not reduced in an 

adri nprl double mutant line. adrl-mediated DREB2A gene expression could therefore 

be regulated by a SA-dependent but NPRI-independent signalling pathway. SA may 

function to amplify ROT accumulation during the expression of disease resistance 

(Shirasu et al. 1997; Grant and Loake, 2000). Also, ROIs have been reported to cue 

DREB2A expression (Desikan et al. 2001). As ROI concentrations are high in adri 

plants (Grant et al. 2003), DREB2A expression might result from SA amplified ROI 

synthesis, which would suggest that DREB2A expression is under redox control. It is 

noteworthy that both ROIs and NO have also been implicated as second messengers in 

the regulation of stomata aperture (Pei et al. 2000; Desikan et al. 2002). The exogenous 

application of BTH alone, however, was insufficient to trigger significant drought 

tolerance. Therefore, additional SA-independent mechanisms may also be active in adri 

plant lines. 

The requirement for SA in the establishment of drought tolerance in adri plants was 

also supported from the analysis of a series of double mutants and transgenic lines. The 

adri nahG mutant line exhibited significantly decreased adrl-mediated drought 

tolerance. Furthermore, drought tolerance was also substantially attenuated in 

adri/ADRJ edsi double mutant line. EDS1 is required for signalling by the TIR-NBS- 
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LRR class of R proteins (Aarts et al. 1998), the establishment of non-host resistance in 

Arabidopsis against wheat powdery mildew (th et al. 2003) and the development of 

basal disease resistance (Parker et al. 1996). EDS1 is a putative lipase which is thought 

to function within a SA-dependent amplification loop (Feys et al. 2001; Loake, 2001). 

As extensively discussed in Chapter 9, EDS 1 may be required in the signal amplification 

loop that triggers the accumulation of elevated levels of SA, subsequently activates 

adrl-mediated signal pathway and confers drought tolerance in adri plants. In contrast, 

NDR1, which is required for signalling by the CC-NBS-LRR class of R proteins (Aarts 

et al. 1998), does not appear to be required for drought tolerance established by adri, 

because the both adri/ADRJ ndrl and adri/adri ndrl mutant lines were not 

compromised in drought tolerance. It is noteworthy that the requirement for EDS 1, but 

not for NDR1, observed in the establishment of the adrl-mediated drought tolerance 

parallels their requirement in the activation of adrl-mediated disease resistance 

described previously. Therefore, the engagement of the pathway mediated by ADR 1, 

which leads to the establishment of both disease resistance and drought tolerance, 

appears to signal through EDS1 but not NDR1. 

NPR1, which is also required for SA signal transmission (Cao et al. 1994), appears to be 

dispensable for the establishment of adrl-mediated drought tolerance, because adri 

nprl lines were not significantly decreased in drought tolerance. Furthermore, 

hemizygous and homozygous adri plants containing either coil or ein2, were also not 

significantly different from adri plants with respect to drought tolerance. JA and El are 

therefore also unlikely to play a role in adrl-mediated tolerance to dehydration stress. In 

contrast, drought tolerance was strongly reduced in adri nahG lines. However, adri 

lines which contained the nahG transgene were still significantly more drought tolerant 

than Col-0 plants, suggesting additional, SA-independent mechanisms also contributed 

to dehydration tolerance. In this context, double mutant analysis also suggested a 

requirement for ABA to establish adrl-mediated drought tolerance. In homozygous and 

hemizygous adri plants the abil mutation reduced the survival rate following 15-days 

of water withdrawal to 70% and 5% respectively. Therefore, additional ABA- 
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independent mechanisms can convey increased drought tolerance in plants homozygous 

for adri. 

Interestingly,  northern analysis also suggested that SA might function as a negative 

regulator of some abiotic responsive signalling pathways in adri mutant line. For 

example, in the adri/adri nahG double mutant, RD29A and DREBJA but not RD22 

transcripts were detected, suggesting SA may suppress RD29A and DREBJA gene 

expression in adri plants. As DREBJA but not RD29A transcripts accumulated in adri 

nprl plants, NPR1 function may be required for the SA-dependent suppression of 

DREBIA but not RD29A. SA may therefore function as both a positive and negative 

regulator of distinct abiotic response pathways. The SA-dependent suppression of some 

abiotic stress signalling pathways may explain why adult adri plants exhibited increased 

sensitivity to NaCl. This hypothesis is consistent with the observation that nahG plants 

showed increased tolerance to salt and other osmotic stresses (Borsani et al. 2001). 

The establishment of both drought tolerance and salt hyper-sensitivity following 

engagement of the adrl-signal pathway is a good example of the complex signalling 

network and overlap among signalling pathways activated in response to abiotic stresses 

(Knight and Knight, 2001; D6ng et al., 2002). hbovering the identities and connection 

diversities of the common nodes of this signalling network may be important for rational 

crop design. 
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7) Gene expression profiling in TA::ADRI transgenic lines 

7.1 Microarray analysis of DEX treated TA::ADR1 plants 

Microarray analysis represents a reliable technology that enables the simultaneous 

transcription analysis of several thousand genes. This technique has been successfully 

employed to study plant response to both biotic and abiotic challenges (Wan et al., 2002; 

Seki et al., 2004) and it also representes a precious tool to characterize disease resistant 

mutants and transgenic lines (Brodersen et al., 2002; Lorenzo et al., 2003). To search for 

the expression of additional drought responsive and defence related genes in adri plants, 

a microarray experiment was undertaken. This experiment was carried out in 

collaboration with Dr Seki, coordinator of the Microarray hit at the Riken Center 

(Japan). This research group developed an Arabidopsis microarray tool containing over 

7,000 independent full-length cDNA groups that enabled the identification of many 

genes responsive to different environmental challenges (Seki et al., 2002a; Seki et al., 

2002b; Oono et al., 2003; Seki et al., 2004). 

7.1.1 Gene expression profiling of TA::ADR1 versus TA:: plants 

The severely reduced stature of adri plants, similar to that of most disease resistance 

mutants, may alter the expression of several genes induced indirectly due to the chronic 

ADRI over-expression. Consistent with this assumption, several well-characterized 

genes involved in development were identified in microarray studies of disease resistant 

mutants (Schenk et al., 2000; Brodersen et al., 2002). In order to aid the identification of 

genes that are directly regulated by the expression of ADRJ, plants containing the 

conditional ADR1 allele were employed to perform the transcriptome analysis. The 

genomic-scale mRNA levels of TA:: and TA::ADRJ lines, 50 hours after DEXieatment, 

were compared to determine cDNA groups that exhibited significant difference in gene 

expression. 

Microarray results obtained at the Riken Center were subsequently analysed at the 

filversity of Edinburgh. Expression data were standardized employing a X DNA 
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control fragment and approximately 5% (n = 336) of the eDNA groups, corresponding to 

317 genes, exhibited significantly increased transcript accumulation in DEXreated 

TA::ADRI plants with an expression ratio at least 2-fold greater than in TA:: plants. The 

extensive list of up-regulated genes is reported in Appendix 1, whereas the genes 

exhibiting an expression ratio at least 3-fold greater in TA::ADRJ versus TA:: plants are 

presented in Table 7.1. 

TA::ADR 1/TA:: 
expression ratio AGI code RAFL code Gene name Coded protein 

13.9 At2g14610 RAFL06-68-J19 PR1 pathogenesis-related protein 

8.9 At4g12470 RAFLII-11-M23 lipid transfer protein (LIP) 

7.0 At2g29350 RAFL06-14-B04 SAG 13 alcohol dehydrogenase 

5.5 At2g43570 RAFL04-12-G16 glycosyl hydrolase (chitinase) 

4.8 At4g02380 RAFL06-13-N20 SAG2I late embryo abundant protein 

4.6 At1g75040 RAFL04-13-G17 PR5 thaumatin-like protein 

4.3 At1g75750 RAFL1I-10-B10 GA SAl GA-responsive GASTI protein 

4.2 At2g43510 RAFL05-18-K08 trypsin inhibitor-related 

4.2 At1g02920 RAFL07-14-E05 GSTII glutathione S-transferase 

4.0 At3g30775 RAFL05-17-E01 EDR5 proline dehydrogenase 

3.9 At1g73260 RAFL11-04-122 trypsin inhibitor propeptide 

3.9 At4g30270 RAFL04-09-024 MERI5B endo xyloglucan transferase 

3.8 At1g02930 RAFL05-16-007 EDRII/GSTI glutathione S-transferase 

3.7 At3g22660 RAFL08-09-M05 lipid transfer protein (LTP) 

3.6 At1g28580 RAFL05-21-019 putative lipase 

3.3 At5g39670 RAFL09-10-1314 calcium-binding EF-hand protein 

3.1 At1g54100 RAFL08-15-L09 ALDH aldehyde dehydrogenase 

3.1 At4g39670 RAFL05-01-D05 expressed protein 

3.0 At3g49120 RAFL09-07-G15 peroxidase 

3.0 At5g10760 RAFL06-12-P24 nucleoid DNA-binding protein 

Table 7.1 Genes showing increased mRNA levels in DEX treated TA::ADR1 plants. 

The genes exhibiting an expression ratio at least 3-fold greater in TA::ADRI plants versus TA:: 

control lines are listed. Induction fold, codes, name and predicted encoded protein of each gene 

are reported. 
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Furthermore, approximately 0.7% (n =45) of the eDNA groups, corresponding to 39 

genes, exhibited significant expression reduction in DEXreated TA: :ADR1 plants with 

an expression ratio at least 2-fold lower than TA.. plants. The list of the down-regulated 

genes is also reported in Appendix 1. 

7.1.2 Validation of microarray results 

As previously reported in chapter 4, both PR] and GSTJ transcripts were significantly 

accumulated in DEXreated TA: :ADRJ plants, whereas they were undetectable in DEX 

treated TA:: control lines. Consistent with these results, the gene exhibiting the most 

elevated transcript increase, 14-fold, in DEXreated TA::ADRJ versus TA:: plants was 

PR]. In addition, the transcription level of GSTJ was estimated to be 4-fold greater in 

DEXreated TA: :ADRJ lines compared to that in the DEXreated TA:: control plants. 

The expression of selected genes were confirmed by northen blot analysis (data not 

shown). 

7.2 Analysis of genes induced by transient ADRJ expression 

Among the 317 Arabidopsis genes exhibiting significantly increased expression in DEX 

treated TA::ADRJ plants, only 77 genes are characterized and described in the literature; 

whereas the large majority of these genes have not been characterised. The results of 

several microarrays, exploited to study plant response to biotic and abiotic stresses, were 

searched for the transcription levels of the genes significantly accumulated in DEX 

treated TA: :ADRJ plants. Specifically, the microarray data employed originated from 

analyses of plant response to drought stress (Seki et al., 2002a), salt stress (Seki et al., 

2002a), osmotic stress (Oono et al., 2003), re-hydration stress (Oono et al., 2003), ABA 

treatment (Seki et al., 2002b) and cold stress (Chen et al., 2002; Fowler and Thomashow, 

2002; Seki et al., 2002a). Several of these studies were conducted at the Riken Center; 

this fact facilitated the comparison of the transcription levels because the set of full-

length cDNAs analysed and technical procedures were identical. In addition, we also 

employed microarray data from studies investigating plant response to biotic stresses 

such as treatment with SA (Schenk et al., 2000; Chen et al., 2002), BTH (Schenk et al., 
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2000), JA (Schenk et al., 2000), ET (Schenk et al., 2000), plant response to pathogen 

infection (Schenk et al., 2000), analysis of disease resistance mutants such as acdll 

(Brodersen et al., 2002), cim5, dm6 and cirnil (Schenk et al., 2000) and the enhanced 

resistant line 35S::ERF1 (Lorenzo et al., 2003). Results of this investigation are reported 

below. 

7.2.1 Description of genes showing increased mRNA levels in DEX treated TA: :ADR1 

versus TA:: plants 

Among the genes exhibiting an expression ratio of at least 3-fold greater in DEXreated 

TA::ADR1 versus TA:: plants, twelve transcripts (60%), represented defence-related 

genes (khes et al., 1992; Murray et al., 2002) (Figure 7.1). Interestingly, ten transcripts 

(50%) corresponded to genes responsive to drought (Kiyosue et al., 1993; Kiyosue et al., 

1996; Kirch et L., 2001), whereas thirteen (65%) genes were responsive to abiotic 

stresses other than drought (such as high salinity, ABA treatment, temperature shock or 

osmotic stress) (Pei et L., 2000; Wagner et al., 2002). It is noteworthy that the 

expression of 7 genes (35%) were induced by both biotic and abiotic stresses. These 

results were proportional to those obtained from the analysis of the 317 genes exhibiting 

an expression ratio at least 2-fold greater in DEXreated TA::ADRJ versus TA:: plants 

(Figure 7.2). The number of genes involved in defence, drought and abiotic stress 

responses was 68 (21.5%), 49 (15.5%) and 57 (18%) respectively, whereas the 

expression of 30 genes (9.5%) was regulated by both biotic and abiotic stresses. To 

illustrate further genes up-regulated by the transient expression of ADRJ, a short 

description of each group presented in Figure 7.2 is reported below. 

The first and largest group represents 203 genes that have not been previously identified 

as responsive to biotic challenges or abiotic stresses; 83 genes encoded proteins of 

unknown function. Genes encoding for putative proteins that might mediate ADR1-

induced disease resistance and/or drought tolerance included: At] g10570 (up-regulated 

2.3 fold greater in DEXreated TA::ADR] versus TA:: plants) which encodes for a 

protein phosphateses 2, two protein kinase genes, APK2A and At2g39660 (both up-

regulated 2 fold) (Ito et al., 1997) and ZIK4 kinase (up-regulated 2 fold), encoding a 
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ADR1 Total number of genes 20 

Drought 1 Defence 

Abiotic stresses 

Figure 7.1 Classification of the 20 genes showing an expression ratio at least 3-fold 

greater in DEX treated TA::ADRI versus TA:: plants 

Genes responsive to drought, defence and abiotic stress were divided into 7 groups: drought-

responsive gene (1 gene); defence-related genes (5 genes); abiotic stresses-inducible genes (2 

genes); drought- and defence-inducible gene (1 gene); drought- and abiotic stresses-responsive 

genes (5 genes); defence-related and abiotic stresses-inducible genes (3 genes); genes 

responsive to drought, biotic and abiotic stresses (3 genes). 

Figure 7.2 Classification of the 317 genes showing an expression ratio at least 2-fold 

greater in DEX treated TA::ADRI versus TA:: plants 

Genes responsive to drought, defence and abiotic stress were divided into 7 groups: drought-

responsive genes (16 genes); defence-related genes (38 genes); abiotic stresses-inducible 

genes (11 genes); drought- and defence-inducible genes (3 genes); drought- and abiotic 

stresses-responsive genes (19 genes); defence-related and abiotic stresses-inducible genes (19 

genes); genes responsive to drought, biotic and abiotic stresses (11 genes). 
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mitogen activated protein kinase (Nakamichi et al., 2002). These proteins may play a 

role in the putative kinase signalling cascades activated by ADRJ expression. In addition, 

several proteins might play a role in calcium-dependent signal transduction activated by 

ADRJ; GBF2 (up-regulated 2 fold), which encodes a bZIP transcription factor regulated 

by Ca  2+  (Jakoby et al., 2002), At1g73800, At4g3 100 and At5g5 7580 (up-regulated 2.1, 

2.1 and 2 fold respectively) three genes encoding for calmodulin-binding proteins, CAX1 

(up-regulated 2 fold) a calcium antiporter gene (Hirschi et al., 1996), CAM9 (2.1 fold 

up-regulated) encoding for a calmodulin protein (Zielinski, 2002) and At5g39670 (up-

regulated 3.3 fold), that encodes for a calcium-binding EF-hand protein. Furthermore, 

the At1g28580 gene, which encodes for a putative lipase, was up-regulated 3.6 fold 

greater in DEXreated TA::ADR1 versus TA:: plants. This protein exhibits the same 

structure as EDS1 and PAD4, suggesting that At1g28580 might also have a similar 

function in disease resistance signalling (Falk et al., 1999; Jirage et al., 1999). 

The second group consists of 38 genes that were previously identified to play a role in 

disease resistance. Transcripts that exhibited greater accumulation in DEXtreated 

TA.:ADRJ versus TA.: plants included several well-characterised defence-related genes: 

PR] (14 fold up-regulated), PR2 (2.7 fold up-regulated), PR5 (4.6 fold up-regulated), 

PDFJ,1 (2.3 fold up-regulated) and PDFJ.2 (2.7 fold up-regulated) (khes et al., 1992; 

Epple et al., 1997b). In addition, the following genes were also accumulated in DEX 

treated TA.:ADRJ plants: ICS1 (2.2 fold up-regulated) that encodes for an isochorismate 

synthase which is required for defence-mediated SA synthesis (Wildermuth et al., 2001), 

RAP2.2 (2.2 fold up-regulated) which encodes for an AP2 domain-containing protein 

highly induced by SA, JA, ET and during the establishment of systemic resistance 

(Okamuro et al., 1997), and PAD4 (2 fold up-regulated) which encodes for a putative 

lipase required in basal defence (Jirage et al., 1999). 

Sixteen genes composed the group of transcripts that are specifically responsive to 

drought stress. Among these At5g04 760 (2 fold up-regulated) encodes a myb 

transcription factor (Okamuro et al., 1997), At3g49110 (2.7 fold up-regulated) encodes a 

peroxidase and three genes, At3g49110, At4g00740 and At5g06050 (2.1, 2 and 2.1 fold 
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up-regulated respectively), share high sequence homology with ERD (early responsive 

to drought) 3 (Taji et al., 1999). 

The fourth class grouped eleven genes that are responsive to abiotic stresses other than 

drought. This class included: At4g12470 (9 fold up-regulated) which encodes for a 

protease inhibitor/seed storage/lipid transfer protein, ERD5 (4 fold up-regulated) which 

is highly responsive to osmotic stress (Kiyosue et al., 1996) and BXTL1 (2.3 fold up-

regulated) encoding for a xylosidase specifically expressed in tissues undergoing 

secondary wall thickening (Goujon et al., 2003). It is noteworthy that cell wall 

thickening is also an important mechanism of plant defence against invading pathogens 

(Schmelzer, 2002; Goujon et al., 2003; Vorwerk et al., 2004). 

Three transcripts, that exhibited greater accumulation in DEXreated TA.:ADRJ versus 

TA:: plants, encode for proteins that are involved in both drought stress and defence 

responses. These transcripts are At2g435 70 (5.5 fold up-regulated) encoding a chitinase, 

PDX (3.3 fold up regulated) which encodes a proline oxidase (Verbruggen et al., 1996) 

and TRXS (2.5 fold up-regulated) which encodes a cytosolic thioredoxin that reduces 

disulfide bridges of target proteins (Rivera-Madrid et al., 1995). This class of genes 

could be particularly important since the over-expression of ADRI confers both disease 

resistance and drought tolerance. 

Sixteen transcripts were responsive to both biotic challenges and abiotic stresses other 

than drought. The most significant genes of this group are listed below: GST11 (4.2 fold 

up-regulated) encodes a glutathione transferase (Wagner et al., 2002), COR8.6 (2 fold 

up-regulated) encodes a glycine-rich protein highly induced by cold and several biotic 

stresses (Quigley et al., 1991), PIP3 (2 fold up-regulated) encodes a salt-stress-inducible 

aquaporin (Pih et al., 1999) and PRXR2 (2 fold up-regulated) encodes a peroxidase. 

In addition, nineteen transcripts, that exhibited greater accumulation in DENreated 

TA::ADRJ versus TA.: plants, have been previously identified as responsive to multiple 

abiotic stresses, including drought stress. Among these transcripts we identified 

ABF4/AREB2 (2 fold up-regulated), which encodes an ABA-responsive ABRE-binding 

bZIP transcription factor (Ith et al., 2000), NCED3 (2 fold up-regulated) which encodes 
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a key enzyme in the ABA biosynthesis, the 9-cis-epoxycarotenoid dioxygenase 3 (luchi 

et al., 2001; Tan et al., 2003), ALDH (3.1 fold up-regulated) which encodes for an 

aldehyde dehydrogenase isoform (Kirch et al., 2001) and RD20 (2.3 fold up-regulated) a 

calcium-binding EF-hand gene induced by abscisic acid during dehydration (Takahashi 

et al., 2000). 

Finally, eleven were characterised as responsive to multiple abiotic stresses, drought and 

biotic challenges. Among them, SAG21 (3.3 fold up-regulated) encodes a late 

embryogenesis abundant protein (Weaver et al., 1998), At5g20230 (2.6 fold up-regulated) 

encodes a blue copper binding protein and GPX (2.1 fold up-regulated) encodes a 

glutathione peroxidase (Rodriguez Milla et al., 2003). 

7.3 Investigation of genes down-regulated by transient expression of ADR1 

Microarray analysis identified 38 genes exhibiting an expression ratio at least 2-fold 

lower in DENreated TA::ADRJ versus TA:: plants (see Appendix 1). The transient 

expression of ADRJ repressed the transcription of several genes involved in the 

photosynthetic process. In particular, seven genes encoding for chlorophyll a/b-binding 

proteins, CAB], C4B2, LHCB2.1 , LHCB2.2, LHCB3, At2g34420 and At4g1 0340 (2.8, 2, 

2.2, 2.7, 2, 2, and 2.1 fold down-regulated respectively) (Brusslan and Tobin, 1992; 

Anderson and Kay, 1995; N et al., 2001; Jackowski et al., 2001) and At1g31330 and 

At3g16140 (3.2, and 2 fold down-regulated respectively), that encode for two 

photosystem subunit precursors, were down-regulated in DE)&eated TA.:ADRI plants. 

In this context, the establishment of systemic resistance in wild-type plants and the 

constitutive activation of disease resistance in mutant lines caused a decrease in the 

activity of the photosynthetic machinery (Maleck et al., 2000; Brodersen et al., 2002; 

Cartieaux et al., 2003). In particular, the fact that transcription of LHC genes were 

repressed by both SA and BTh treatments is consistent with the observation that adri 

mutants accumulate elevated levels of SA (Maleck et al., 2000; Grant et al., 2003). 

In addition, the expression of three genes involved in cold acclimatisation were also 

repressed by the transient expression of ADRJ. The transcription rates of the 
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RD29A/C0R78, COR15A and C0R413 genes were down-regulated 2.6, 2.3 and 2 fold 

respectively in DEXreated TA.:ADRJ plants compared to TA.: lines (Mnaguchi-

Shinozaki and Shmozaki, 1993; Steponkus et al., 1998; Breton et al., 2003). 

It is noteworthy that three heat shock protein genes were also repressed by the transient 

expression of ADRJ. The HSP90.2, HSP90.3 and HSF90.4 genes (all 2.3 fold down-

regulated) encode for heat shock proteins that were only modestly induced by heat but 

were significantly up-regulated by NaCl, drought and ABA (Takahashi et al., 2003). In 

addition, HSP90.2 physically associates with RPM1 and modulates disease resistance 

signalling mediated by RPM1 (Hubert et al, 2003). The HSP90.2, HSP90.3 and HSP90.4 

genes encode for proteins that are 97% identical and are located in physical proximity on 

Arabidopsis chromosome 5. These proteins share more than 75% sequence identity with 

HSP90.1, a chaperone acting in the NBS-LRR-mediated signalling pathway by 

physically interacting with both RAR1 and SGT1B (Takahashi et al., 2003). 

Consistent with the antagonistic regulation that orchestrates the establishment of the SA 

and JA defence pathways, the expression of a group of JA-responsive genes was 

repressed by the transient expression of ADRI (Felton et al, 1999: Li et al., 2004). VSPJ, 

VSP2 and At2g4000 were down-regulated 2.1, 4.1 and 2.1 fold respectively. Both VSPJ 

and VSP2 genes encode for proteins with anti-flingal and anti-nematode activities (Ellis 

and Turner, 2001). Furthermore, TGGJ and TGG2 (2 and 2.4 fold down-regulated) are 

also JA-responsive genes and they encode for the only two Arabidopsis myrosinases that 

catalyse the hydrolysis of glucosinolates into compounds toxic to numerous microbes 

and herbivores (Husebye et al,, 2002). 
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7.4 Discussion 

The gene expression profiling reported here showed that transient expression of ADRI 

can orchestrate the transcription rate of many genes responsive to both biotic and abiotic 

stresses. This observation is consistent with the fact that adri mutant plants are 

simultaneously disease resistant, drought tolerant and salt hyper-sensitive. To elucidate 

the adrl-mediated mechanism conferring drought tolerance, we focused on genes 

encoding proteins involved in signalling in response to dehydration stress. NCED3, 

which was highly induced by drought stress, encodes, a dioxygenase involved in ABA 

biosynthesis (Tuchi et al., 2001). The transgenic lines overexpressing NCED3 

accumulated high levels of ABA and showed increased drought tolerance (Juchi et al., 

2001). The high expression of the NCED3 transcripts observed in DEXtreated 

TA::ADRJ plants might confer drought tolerance by increasing ABA biosynthesis. In 

addition, the ABRE binding factor ABF4, which regulates ABA-mediated stress 

responses, was also up-regulated by transient expression of ADRJ. Transgenic lines 

over-expressing ABRE exhibited a significant increase in drought tolerance (Kang et al., 

2002). Moreover, 35S: :ABRE transgenic plants exhibited greater salt hyper-sensitivity 

compared to that of wild-type plants; however, they retained a response to osmotic stress 

caused by mannitol treatment, similar to that observed for wild-type plants (Kang et al., 

2002). An equivalent hyper-sensitivity to ionic stress and wild-type response to osmotic 

stress was observed in adri mutant plants (Chini et al., 2004). These data therefore 

suggested that the ABF4-mediated stress signalling might contribute to adrl-mediated 

drought tolerance and salt hyper-sensitivity. However, measurements of ABF4 activity 

and ABA levels in adri mutants and DE)&eated TA: :ADRJ plants will be required to 

verify this hypothesis. 

Five genes encoding for calcium-binding proteins were significantly up-regulated in 

DEXreated TA: :ADRJ versus TA:: plants, a number of these proteins might represent 

elements integral to the signalling pathway orchestrated by ADR1. Alternatively, the 

high transcription rate of genes encoding calcium-binding proteins in DENa-eated 

TA::ADRJ plants might be the consequence of high levels of ROS induced by ADR1 
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expression. This hypothesis would be consistent with the fact that ROS can activate 

Ca2tmediated signalling (Dolmetsch et al., 2001). 

The VSPI and VSP2 genes are highly expressed in wild-type Arabidopsis plants 

following JA treatment and also in cevi mutants, which show increased JA 

accumulation and enhanced resistance to several Erysiphe isolates (Ellis and Turner, 

2001). The transcription of both VSP1 and VSP2 genes was significantly repressed in 

DEXreated TA: :ADRl versus TA:: plants, consistent with the antagonistic regulation 

that orchestrates the establishment of SA- and JA-dependent defence pathways (Felton 

et a!, 1999: Li et al., 2004). The VSP2 gene encodes for an effector of salt tolerance 

whose transcription is up-regulated during salt stress adaptation in wild-type plants and 

repressed in the salt hyper-sensitive mutants sos (salt overly sensitive) (Ishitani et al., 

2000). The negative regulation of VSP2 expression in DENreated TA: :ADRJ plants 

might therefore contribute to the salt-hypersensitive phenotype of adri mutants. 

Altogether, these results suggest that expression of VSP genes might be regulated by 

both biotic and abiotic defence pathways. 

The over-expression of ADRJ triggers accumulation of SA in adri plants. It was 

therefore surprisingly that the expression of three JA-responsive genes, PDF1.2, TRX5 

and GASA], were up-regulated in DEeated TA..ADRJ versus TA:: plants. Moreover, 

the adrl-mediated accumulation of PDFJ.2 transcripts was COIl-dependent because it 

was abolished in adri coil double mutants (Grant et al., 2003). The expression of JA-

responsive genes can be regulated by the cyclopentenone 12-oxo-phytodienoate (OPDA) 

in a COIl-dependent manner (Stintzi et al., 2001). The expression of PDFJ.2, TRX5 and 

GASA1 genes may therefore be engaged via the selective accumulation of OPDA or a 

related molecule in adri mutants. In this context, the expression of these genes would 

not be antagonised by the activation of the SA-dependent defence pathway in adri 

plants. To address this possibility, further biochemical analysis of adri mutants will be 

required. Alternatively, the transcription of a number of defence genes such as PDF1.2, 

TRX5 and GASAJ might be orchestrated by multiple, overlapping signals, thus the 

expression of these genes may be incompatible with the over-simplified antagonistic 

model of SA- and JA-dependent defence pathways. 
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Finally, it is noteworthy that three heat shock protein genes, HSP90.2, HSP90.3 and 

HSP90.4 showed significantly reduced expression in DEN.reated TA.':ADRJ lines 

versus TA.: plants. The heat shock protein HSP90.1 shares high sequence homology to 

HSP.2, HSP.3 and HSP.4 and these four HSPs form a defined family within the 

Arabidopsis genome (Takahashi et al., 2003). The HSP90.1 protein was identified as an 

element required in R-mediated defence signalling (Takahashi et al., 2003). This protein 

physically interacts with both RAR1 and SGT1B and acts as a chaperone to establish R-

mediated resistance (Takahashi et al., 2003). tifortunately, the analysis of the cDNA 

representing the HSP90.1 gene failed in our microarray analysis, hence it remains 

unknown whether DEeated TA.:ADRJ plants repressed the transcription of HSP90.1. 

Recent results suggest the requirement of HSP90.2 in RPM1-mediated defence 

signalling (Hubert et a!, 2003). Moreover, the hsp90.1 knock-out line retained only 

partial avrRpt2 recognition (Takahashi et al., 2003). The HSP90.3 gene has been 

previously identified as ERD8, whose transcription was up-regulated by dehydration 

stress in an ABA-dependent manner (Kiyosue et al., 1994). Finally, the expression of 

both HSP90.2 and HSP90.3 genes is repressed in wild-type plants following SA 

treatment and the establishment of disease resistance (Schenk et al., 2000). There is 

therefore mounting independent evidence that the four HSP90 isoforms might act as a 

dual regulatory system in both biotic and abiotic defence signalling (Kiyosue et al., 1994; 

Schenk et al., 2000; Hubert et al, 2003; Takahashi et al., 2003). 

The observation that transient ADRJ expression repressed the transcription of three 

HSP90 genes is not inconsistent with the ADR1 role in the establishment of disease 

resitance. The degradation of RPM1 has been previously shown to occur during the 

onset of KR mediated by a number of avr/R product interactions (Boyes et al., 1998). 

This study suggests the presence of a negative feedback loop controlling the extent of 

HR and the overall resistance response. The repression of HSP90 genes during the 

establishment of adrl -mediated resistance is consistent with the hypothesis of a negative 

regulatory mechanism controlling cell death and amplitude of defence responses 

following pathogen recognition. This hypothesis is also consistant with the observation 

that HSP90 genes are down-regulated in response to SA treatment (Schenk et al., 2000). 
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8) Structural and phylogenetic analysis ofADRi protein 

8.1 Identification of the ADR1 family in the Arabidopsis thaliana genome 

The most prevalent class of plant resistance genes encodes for proteins that contain a 

nucleotide-binding site (NBS) domain located in the central portion of the protein and a 

C-terminal leucine-rich repeat domain (LRR) (Dangl and Jones, 2001). NBS-LRR genes 

are abundant in all plant species and they represent approximately 0.5% of the whole 

Arabidopsis genome (Cannon et al., 2002; Pan et al., 2000b; Meyers et al., 2003). NBS-

LRR proteins were divided into two groups based on the presence of an N-terminal 

region that showed high homology to the Tollflnterleukin- 1 Receptor (TIR) domain (Pan 

et al., 2000a). Most of the non-TIR NBS-LRR proteins exhibited a coiled-coil (CC) 

domain in the N-terminal region (Meyers et al., 1999). Recently, all NBS-LRR genes 

from the complete Arabidopsis genome were identified and predicted to encode for 83 

TIR-NBS-LRR (TNL) and 51 CC-NBS-LRR (CNL) proteins (Meyers et al., 2003). 

The complete set of NBS-LRR genes were employed for phylogenetic analysis and 

proteins encoded by these 149 NBS-LRR genes were also searched for conserved motifs 

(Meyers et al., 2003). The overall results revealed a greater degree of diversity among 

the CNL proteins compared to that uncovered among TNL proteins (Meyers et al., 

2003). This observation reflected a more ancient origin of the CNL group compared to 

that of the TNL group. Furthermore, four distinct, CNL sub-groups (CNL dade A, B, C 

and D) were identified in Arabidopsis and their presences were confirmed in several 

plant species (dade Ni, N2, N3 and N4) (Cannon et al., 2002; Zhu et al., 2002; Meyers 

et al., 2003; Ashfield et al., 2004). The ADRJ gene belonged to the smallest and least 

characterised of these clades, designated as CNL-A in Arabidopsis and non-TIR N4 in 

the entire plant kingdom (Cannon et al., 2002; Baumgarten et al., 2003; Meyers et al., 

2003). 
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8.2 Identification of ADR1 homologs in Arabidopsis thaliana 

In June 2000 Dr Grant identified two putative ADRJ Arabidopsis homologues genes, 

At4g33300, ADRJ-LIKE] (ADRJ-Li), and At5g04 720, ADR1-LIKE2 (ADRJ-L2), that 

showed 69 and 67 % sequence identity to ADRJ respectively (Grant et al., 2003). "The 

Arabidopsis Initiative Resource" (TAIR) released the first complete sequence of the 

Arabidopsis genome in December 2000 (TAIR, 200); in addition, many annotations are 

being regularly updated. Therefore, the TAIR database was searched for ADRJ 

homologues employing the "Blast" programme. 

Blast results confirmed the high homology of ADRI-Li and ADR1-L2 to ADRJ and 

identified only one additional Arabidopsis gene that exhibited significant identity to 

ADR1. The At5g4 7280 gene showed 67% sequence identity to ADRJ and was therefore 

named ADR1-LIKE3 (ADR1-L3). ADRJ-L3 was predicted to encode a 623 amino acid 

protein which, in contrast to the 787 amino acid ADR1 protein, lacked the 180 amino 

acidic portion of the N-terminal region of the protein corresponding to the CC domain. 

Comparative analyses of ADR1-Ll, ADR1-L2 and ADR1-L3 proteins revealed 68, 65 

and 66% sequence identity (81, 80 and 71% homology) to ADR1 respectively. 

Consistent with these observations, ADR1 and the three ADR1-LIKE proteins will be 

subsequentially referred to as ADR1 proteins or ADR1 family. 

The comprehensive study on Arabidopsis NBS-LRR genes identified two additional 

genes, At5g66900 and At5g66910, as members of the CNIL-A group, which correspond 

to the ADRJ dade (Meyers et al., 2003). These two paralog genes were located in 

physical proximity and shared 91% sequence identity. However, AT5g66900 and 

AT5g66910 proteins respectively showed 31 and 30% sequence identity to ADR1 

compared to 68, 65 and 66% identity of ADR1-Li, ADR1-L2 and ADR1-L3 

respectively. Significant sequence homology among ADR1 proteins, AT5g66900 and 

AT5g66910 was identified only in the P-loop and kinase 2 domains, which were motifs 

commonly conserved among all NBS-LRR proteins (Meyers et al., 1999; Pan et al., 

2000a). On the other hand, ADR1 genes, AT5g66900 and AT5g66910 presented the same 

number and location of the four introns (Meyers et al., 2003). In addition, the six CNL-A 
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genes encoded for the only 6 NBS-LRR proteins, out of 162 investigated, that contained 

a glutamine (Q) instead of a metbionine (M) as third residue in the MHDV domain 

(Meyers et al., 2003). This methionine was conserved among all remaining 156 

Arabidopsis NBS-LRR proteins and was integral to the core sequence liable for the 

MI-IDV domain name itself (Meyers et al., 2003). 

Overall, these results suggested that AT5g66900 and AT5g66910 were more similar to 

the ADR1 proteins than any other NBS-LRR protein. For further investigations, these 

two tandem genes should, however, be considered as a different sub-group, as initially 

proposed by Mondragon-Palomino and co-workers (Mondragon-Palomino et al., 2002). 

This hypothesis was consistent with the phylogenetic results in which the CNL-A group 

was markedly divided into two sub-groups; the first represented by the four ADRJ genes 

and the second sub-group consisted of the paralog A T5g66900 and A T5g6691O genes 

(Mondragon-Palomino et al., 2002; Baumgarten et al., 2003; Meyers et al., 2003). 

8.3 Analysis of the CC, NIBS and LRR domains of the ADR1 proteins 

Comparative analysis of the NBS domain of numerous plant NBS-LRR proteins 

identified eight conserved motifs (P-loop, RNBS-A, -B, -C, -D, kinase 2, GLPL and 

MHDV) and computational analysis additionally predicted 30 putative motifs specific 

for individual NBS-LRR clades (Meyers et al., 1999; Pan et al., 2000b; Meyers et al., 

2003). The presence of six conserved motifs (P-loop, kinase 2, RNBS-A, GLPL, RNBS-

D and MHIDV) in the NBS domain of ADR1 was previously reported (Grant et al., 

2003). The amino acid sequences of the four ADR1 proteins were further evaluated 

employing the programme MEME (Multiple Expectation Maximisation for Motif 

Elicitation) (Bailey and Elkan, 1995) and results are described below in order in which 

domains are located in the proteins, starting at the N terminus (see supplementary CD 

data for complete MEME output). 
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8.3.1 Analysis of the CC, NBS domains 

MEME analysis did not identify any significant conserved motif within the N-terminal 

CC domain (from ADR1 Ml to L187). In contrast, MEME analysis of the NBS domain 

(from ADR1 F188 to N472) identified seven motifs, six of which corresponded to the 

well established, conserved motifs previously reported for ADR1 (P-loop, kinase 2, 

RNBS-A, GLPL, RiNBS-D and MHDV) (Grant et al., 2003). Comparative analysis of 

these six domains of the ADR1 proteins and those of the complete set of the Arabidopsis 

NBS-LRR proteins, revealed specific differences in the sequence of the RBNS-D and 

MBDV motifs unique for the ADR1 family (Figure 8.1 and Table 8.1). Furthermore, the 

presence of one additional ADR1 specific motif was uncovered. This putative motif 

(from ADR1 L221 to L234) was designated as TVS, according to the core sequence, and 

is reported in Table 8.1 (marked with "blue box" in Figure 8.1). 

To assess the reliability of this putative motif, the conservation rate of the TVS motif 

among the ADR1 proteins was compared to that of the previously established, conserved 

NBS motifs. Among the four ADR1 proteins, the P-loop, kinase2, RNBS-A, GLPL, 

RNBS-D and MHDV motifs exhibited 74, 89, 50, 67, 52 and 71% sequence identity 

respectively (79, 89, 77, 93, 86 and 100% homology). The putative TVS motif showed 

71% sequence identity (93% homology) among the four ADR1 proteins, greater than 

any other of the conserved NBS motifs apart from the P-loop and kinase 2 motifs. These 

results therefore confirmed that the novel TVS motif was significantly conserved within 

the ADR1 family. Furthermore, the TVS motif spanned a similar, but more defined, 

amino acid sequence, designated as putative NBS-22 motif (Meyers et al., 2003). 

8.3.2 Analysis of the NBS-LRR linker domain 

The end of the NBS domain is conventionally assumed to match with the end of the 

MHIDV motif (Meyers et al., 2003; Ashfield et al., 2004). The LRR domain, however, 

started approximately 40 to 65 amino acids C-terminal to the MIHDV motif and this 

inter-domain region was designated as the NIL linker (NBS-LRR linker) (Meyers et al., 

2003). The motif for this linker was conserved within the different CNL classes but 

113 



varied among classes (Meyers et al., 2003). Within the ADR1 family, the Nt linker was 

78 amino acid long (from ADR1 R473 to S551) and MIEME analysis identified two 

putative motifs, designated LMP and PKAE according to the core sequence of each 

motif (Figure 8.1 and Table 8.1). The MEME statistical analysis confirmed that the 

ADR1 NL linker was the most conserved among the Nt linkers of the four clades 

representing all Arabidopsis CNL proteins (Meyers et al., 2003). In addition, the LMP 

and PKAE putative motifs showed 80 and 71% sequence identity respectively (90 and 

95% homology) among the ADR1 family proteins. Hence, these two motifs exhibited 

greater conservation than previously established NBS motifs, apart from the P-loop and 

kinase 2 motifs. 

8.3.3 Analysis of the LRR domain 

The LRR domain in R proteins may mediate direct or indirect interactions with pathogen 

molecules (Jia et al., 2000; Dangl and Jones, 2001). Structurally, individual LRRs 

formed repeats of n-strand-loop and cc-helix-loop units, with non-leucine residues 

exposed and responsible for protein recognition (Thomas et al., 1996; Michelmore and 

Meyers, 1998; Kobe and Kajava, 2001). Comparative analysis of NBS-LRR genes from 

tomato, lettuce, rice and Arabidopsis revealed that the non-leucine residues of the LRR 

are hypervariable and subject to positive selection (Parniske et al., 1997; Meyers et al., 

1998; Wang et al., 1998; Noel et al., 1999; Ellis et al., 2000). 

Genome wide analysis of Arabidopsis NBS-LRR genes established that the NBS domain 

was significantly more conserved compared to the variable LRR domain (Meyers et al., 

1999; Pan et al., 2000a; Meyers et al., 2003). The comparative sequence analysis of the 

LRR domains (from ADR1 R552 to L734) of the four ADR1 proteins showed a striking 

sequence identity of 57%. In contrast the NBS domain (from ADR1 F188 to N472), 

which was theoretically the most conserved domain within all NBS-LRR proteins, 

exhibited 50% sequence identity within the four ADR1 proteins. The hypervariable LRR 

domain therefore showed greater conservation in the ADR1 family compared to that of 
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the NBS domain and, to my knowledge, this is the first report describing this unique 

property. 

Comprehensive analysis of the complete set of Arabidopsis NBS-LRR proteins 

identified At1g69550, At5g44510 and At2g14080 as the subclass that exhibited the 

greatest sequence identity (45%) and homology (70%) in the LRR domain, apart from 

proteins encoded by tandem paralog genes which normally showed greater identity 

(Meyers et al., 2003). Results presented here clearly identified the ADR1 family as the 

subclass of NBS-LRR genes that exhibited the greatest sequence identity (57%) and 

homology (83%) in the LRR domain. These conclusions were consistent with the fact 

that the ADR1 family was the only CNL dade that did not exhibit significant positive 

selection in the LRR. domain (Mondragon-Palomino et al., 2003). 

Motif Name Protein Group Consensus Sequence 

ADRI family LFLTVSQSPNLEEL 
TVS - 

CC-NBS-LRR not present 

ADR1 family CFLDLGAFPEDKKIPLDVLINVWVEIHDI 
RNBS-D 111 1111 I I I I 

CC-NBS-LRR CFLYCALFPEDYEIxKEKLIDYWIAEGFI 

ADR1 family YYDVFVTQHDVLRDLALHLSN 
MHDV I HI I II 

CC-NBS-LRR VKMHDVVREMALWIA - 

ADR1 family VNRRERLLNPKRE 
LMP - 

CC-NBS-LRR not present 
ADR1 family IVSIHTGEMDEMDWFDMDLPKAEVLILNFSSDNYVLPPFI 

PKAE 
CC-NBS-LRR not present 

Table 8.1 Consensus sequence of the conserved motifs in the NBS domain. 

The consensus sequence of selected motifs, specific for the ADR1 family, are presented in the 

upper line, while the typical sequences for CC-NBS-LRR proteins (Meyer et al. 2003) are 

displayed in the lower line. Underlined residues indicate the core sequences that established the 

motif name. 
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ADR1 
ADR1-L1 
ADR1-L2 
ADR1-L3 

341 
353 
356 
164 

ADR1 MASIAGITTQLL LLALVANTV SC GILITMIVQPTIIQ SG4LSN 60 
ADR1-L1 MAI-T GIATL QL TISTT. NT QLLTLISIPTIIQ SGIL - 59 

ADR1-L2 MA---IIGGVVTL QL VSQTLCGI NLATMIGLQPTITQ SG _V ' 
ADR1 - L3 

: :.*: :.*:*: : .. :. 
*; • *:* 

ADR1 QTQLG IL C VLCN*  N-LI 
im  

QIS LNSQILL 119
ADR1-Li QAQIG;IL DTL GI VLSS ML QLTLLTISN INEIT I 18
ADR1-L2 QAQLM5S$TL C T VLSS NM QLLNLQSVSS LNGQLLV V 117 
ADR1-L3 

ADR1 LAVC LVNG---- INMLLTE------------t4SLS TMMI:Tvs 164 
ADR1-L1 L4V LAS-V L NSLVIQQYGSMIGGGGLISM 177 
AD1-L2 LAv VS T T4MVTTCI 177 
ADR1-L3 

P-Loop 
ADR1 tTVIL-7i U 723 
ADR1-L1 GSLLL 77i 1 3DVt 35 
ADR1-L2 

r 
TDGE GSGMSGSC-• LiEL 37 

ADR1-L3 ----------------iNDE GSGMGSC- IDEE;G 16 
4 ; ;;; 

. :: 4-***** -_i.J •;); 

TVS kinase 2 BNBS-A 
ADR1 TVSS \ThLSSClE DG-\L DV PESLEILH- GSTTVVS - S 281 
ADR1-L1 TVSQS-LLEtS

~L;: 

T!G LsccEA -frL  LD 31TQALD T GCTTkW , 293 
ADR1-L2 TVSQSNLEL! C 1TSFA AL. L.DIESLPQi4M  M GTTTI1V9SS 296 
ADR1-L3 TVSQSHLEET TGWn - DvIR.LjGTlJ1\ GTTTSQS 104 

RNBS-A GLPL 

• : ; 4 ; ; ;* .4* 4 .3 * : k.A*.k:kkk 

RNBS-D 
ADR1 HAZED 401 
ADR1-L1 SEG EMC\LQS GED-sEsLL LLI  ' EASDNDQTT IDC DLL. L 412 
ADR1-L2 AS11E F7 ECL 5E lES +.JiENLD TDC LVL r)  116 
ADR1-L3 El /DE Cs ADILTEND T 24 

PNBS-D MHDV 
ADR1 -: E DDEET S 1NTNN GDG DTQD 461 
ADR1-L1 1 ti. TE DDEU'i r)[j5 iNTTG iIL L DIrT D 472 
ADR1-L2 I ST/AL HELAT •jM TS DI VTQI D 476 
ADR1-L3 C CDA OZ11TDIW1 V U'AMCT iQ D 281 

MMDV LMP PKAE 

ADR1 E1JDE U-TVS TGEMDEMN 521 
ADR1-L1 LL 1  Et'iL)E 1QI7SI TGEMMEMQ 532 

ADR1-L2 ECEi 1.NDE - 1-lv IAI TGEMTQMD 536 
ADR1-L3 L TGMTN 344 
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PKAE LRR1 
ADR1 61 E .LCssbN 41SrLcVLC1;LCNGr 3 [[1. SI.NL1C 581 
ADR1-L1 i5E1LLLC 57 VL IS:4LVLv1Ji;Nc;yS, VILL7 SI LSL5; 592 

DR1-L2 T1LL 596 
ADR1-L3 L 5 sS. r LrT5 I TLT1ll 40 

LPR2 LRR3 LP.R4 
DR1 L'x 5CT QTSDI5C i DI 'I Y? 641 
ADR1-Li NSTT r TL4SLIt.JINS DQTGLDVILI j U 652 
ADR1 L5i

MP 
L 1DHCDD 656 

ADP1 LL-. I _LII NNS QTIDI _ JLITIULDDL 1 64 

LRRS 1T7i6 CR/Li 
ADR1 1 699 
ADRi-L 5srcGTSScLs 1./C Cl LIL L GICL C 711 
ADR1 LL STTCGTSNSISI RN... IhL " L4 L 5L LLNS VEICE 716 
ADR1-L3 'FL 4I

11  
 C FICE 524 

LRRS LRR9 
ADR1 L' CT CVSlS EG LGSLE I'RECSt . A1 TD1S ii /59 
ADR1-L1 Li LDIS5Ct;SLSCLEEtD -LEIDR ECCS S VSL5LF,TT.C.DTLT M 770 
ADD 1-L2 1CI 1CSL I :i iTI E:Dl ECSIJSSX I V 'IL LI 'TCL)rIL 1 /76 
ADR1-L3 LVMVDSCLSLSS IC,NVrTLFIDCECSI.SS S3AI/SLr3LC 1TCEAL :: 584 

ADR1 CiVT7/C VAT 'VDLDD 86 
ADR1-L1 CLVCA'.! :IEAAE4.: ILD DDE 797 
ADR1-L2 E\/5'JiVCAAES SD LED 903 
ADRT-L3 VED\:.lETL NNTDE 611 

Figure 8.1 Sequence alignment of ADR1, ADR1-L1, ADR1-L2 and ADR1-L3 proteins. 

Alignment of the complete sequence of ADR1 proteins performed employing the ClustalW 

programme (Thomson et al., 1994). The "" symbol marked residues identical among all 

sequences; the ':" symbol identified residues modified by conserved substitutions; the ". symbol 

residues labelled residues changed by semi-conserved substitutions. The six previously 

established, conserved motifs of the NBS domain (P-loop, kinase2, RNBS-A, GLPL, RNBS-D 

and MHDV) were marked with black boxes". Blue boxes" identified novel conserved motifs 

(TVS, LMP and PKAE). Individual LRR were marked by red lines. Hydrophobic residues (A, I, L 

and V) are represented in green, basic residues (K, R, H) in red, ring-containing residues (P, F, 

Y, W) in blue, acid residues (D, F) in grey, alcoholic and amino-containing residues (S, T, Q, N) 

in yellow, small and S-containing residues (M, G, C) in white. 
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8.4 ADR1 homologs among species of the plant kingdom 

In order to identify putative ADRJ homologs in different plant species database search 

analyses were carried out. Both the full ADR1 protein sequence and the specific 

sequences of the conserved RNBS-D, MT-JDV and PKEA motifs were employed for 

Blast searches. Two public databases were exploited as sequence resources: The 

Institute for Genomic Research (TIGR) and the Munich Information Center for Protein 

Sequences (1VIIPS) databases. At the time the search was conducted, in September 2003, 

37 different plant genome databases were available. In order to minimize errors due to 

insufficient sequence comparison, only clones exhibiting a minimal 200 amino acid 

length were selected for further analyses. 

8.41 Identification ofADRi homologs in different plant species 

First, database searches employing the sequences of RPM1, RPS2, RPS5, RPP8 

(representatives of the CC-NBS-LRR subfamily), RPS4, RP1?1 and RPP13 (members of 

the TIR-NBS-LRR subfamily) were run. All these NBS-LRR proteins exhibited the 

greatest sequence identity of approximately 20-25% (30-40% homology) to clones of 

different plant species. Therefore an empirical two-fold threshold of 50% identity and/or 

70% similarity was selected to identify ADRJ homologs. Fungal, bacterial, yeast and 

mammalian database were employed as negative controls and they failed to identify any 

clone exhibiting high sequence identity to ADR1. One individual sequence from 12 

different plant species showed great sequence identity to ADR1, whereas results from 

the remaining 25 plant databases failed to identify sequences sharing significant identity 

to ADR1. Details of the identified clones are reported in Table 8.2. 

To assess whether these clones could represent ADRI homologs, the four ADR1 proteins 

were aligned with the amino acid sequences of the 12 putative ADR1 homologs 

(Appendix II). The difference in length of these 12 plant clones precluded a 

comprehensive analysis of the full-length protein sequence (Figure 8.2). Therefore, only 

specific motifs present in the majority of these sequences were analysed. The RNBS-D, 

MHDV and PKAE domains met these criteria, and multiple alignments are shown in 
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Plant Species Plant Family 
Common 

Name 
Accession 
Number Length 

Database 
Source 

Oiyzasativa Poaceae Rice TC149181 656  MIPS 
TIGR 

Medicago truncatula Fabaceae Barrel medic 1C87505 647 TIGR 

Triticum aestivum Poaceae Wheat TC107913 574 TIGR 

Sorghum bicolor Poaceae Sorghum TC57671 530 TIGR 

Glycine max Fabaceae Soybean TC195419 433 TIGR 

Zea mays Poaceae Maize BG836496 359 MIPS 

Solanum tuberosum Solanaceae Potato T062931 332 TIGR 

Lycopersicon esculentum Solanaceae Tomato AW039749 293 MIPS 

Pinus taeda Pinaceae Loblolly Pine AW043275 291 MIPS 

Gossypium hirsutum Malvoideae Cotton CD486153 258 TIGR 

Vitis vinifera Vitaceae Wine grape CA32EN0005 244 TIGR 

Lotus japonicus Fabaceae Lotus AV417020 234 MIPS 

Table 8.2 List of plant sequences homologous to Arabidopsis ADRI. 

The accession number and taxonomic details are reported for each plant sequence showing 

high homology to ADRI. The length of the amino acid sequence and the database from which 

these sequences were identified are also reported. 
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Figure 8.3, 8.4 and 8.5 respectively. The degree of conservation of these motifs among 

all plant sequences, with the exception of the Pinus taeda AW043275, was surprisingly 

high. The RNBS-D motif was greatly conserved among several phylogenetically distant 

species (Figure 8.3). The MIHIDV motif was also significantly conserved; it is 

remarkable that all sequences exhibited the specific glutamine (Q) residue in the third 

position of this motif, which was a unique characteristic of the ADR1 family (Figure 

8.4). Equally, the novel PKAE motif, which corresponded to the ADR1 dade-specific 

NL linker domain, exhibited a significantly high conservation level (Figure 8.5). 

Altogether these results strongly suggested that the plant sequences described here 

corresponded to ADR1 homologs, or homologs of an ADR1-LIKE gene. Consistent with 

this hypothesis, a comprehensive phylogenetical analysis of the plant NBS-LRR genes 

confirmed the existence of the non-TIR N4 dade, which correspond to the ADRJ dade, 

among many plant species (Cannon et al., 2002). Within the non-TIR N4 dade the only 

sequence not isolated from Arabidopsis was the Mi truncatula EST AW685945, which 

corresponded to a shorter clone of the M truncatula TC87 505 sequence described here 

(Cannon et al., 2002). 

8.5 Phylogenetic analysis of ADR1 homologs 

A phylogenetic analysis was employed to assess whether the sequences identified in 

different plant species were homologous to ADRJ or to a distinct ADRJ-LIKE gene. 

Initially, the sequence identities between each Arabidopsis ADR1 protein and each plant 

sequence clone were calculated. At5g66900 and At5g66910 genes, which were classified 

as CNL-A members, were included as control. Only one sequence, the Pinus taeda 

AW043275, exhibited similar identity rate to the four ADR1 proteins, At5g66900 and 

At5g669 10, arguing that the pine sequence might represent a homolog of At5g66900 or 

At5g66910 (Table 8.3). The remaining 11 plant clones showed substantially greater 

identity to ADR1 proteins than At5g66900 or At5g66910 (Table 8.3). Each individual 

plant clone exhibited a sequence identity to ADR1 of 47 to 59%, and they also showed 
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AtADRI-L1  
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AtADR1-L3 I I 

OiyzasativaTC149181  

Medicago truncatula TC87505  

TriticumaestivumTC1O7913  

Sorghum bicoIorTC57671  

GIycine max TC195419  

Zea mays BG836496 

Solanum tuberosum TC62931 

Lycopersicon esculentum AW039749 

Pinus taeda AW043275 

Gossypium hirsutum CD4861 53 

Vitis vinifera CA32EN0005 

Lotus japonicus AV417020 

Figure 8.2 Representation of plant sequences homologous to Arabidopsis ADRI. 

The amino acidic sequences are schematically represented by rectangles, whose dimension is 

proportional to the length of the sequence (1cm = 100 residues). The position of the CC, NBS 

and LRR domains and the location of the RNBS-D, MHDV and PKAE motifs within the ADRI 

protein are also indicated. 
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At ADR1 Cr,  1DMC7 EDI LDLLPSSvEDI 
At ADR1-L1 C LDLGI L 12 

At ADR1-L2 C LVLGi Di LDVLiNVLVRTJJUri 
At ADR1-L3 C DMG Gh] vDvLI.NMLv1IDL 
Grape C LDLGP 4ILDV.LINIVE1DL 
Medicago C LDLC'.3 LEVLiNM VEIDI 
Potato C LPLC1 C' L:ENr1 JELDC 
Sorghum LELS ElI 7LINI MLTE)b 
Soybean C LDLCS E D I L  FE, VLIVE1Di 
Rice C LDLGC rl EDETLD7LI.,  IjJMETDL 
Wheat CDLCCEP 4LDJI1\ 'EDJ 

Consensus RNBS-D 

Figure 8.3 Multiple alignment of the RNBS-D motif 

The amino acid sequences corresponding to the RNBS-D motif of all available plant clones were 

aligned employing the ClustalW programme. The consensus sequence was also extrapolated. 

The symbology is identical to that described in Figure 8.1. The accession number (fully reported 
in Table 8.2) was omitted. 

At ADR1 
At ADR1-Li 
At ADR1-L2 
At ADR1-L3 
Cotton 
Grape 
Lotus 
Maize 
Medicago 
Potato 
Rice 
Sorghum 
Soybean 
Tomato 
Wheat 

Consensus MHDV 

VVTQtDVLDLALSS1 SN 
itVTQDVLD.LALLSN 
:  V'iQE LliDJUSN 
1VTQIDVILCVALdLTN 

ISJTQDIL4DLAS1LSN 

SN 
SG 
SC 

JLDf J4tJL)J. 54 igLLN 

E.± S

ral

VQVL9LA1MSN 
DSVTQJE flrLAILJSG 

Figure 8.4 Multiple alignment of the MHDV motif 

The MHDV motif sequences of all plant clones were aligned employing the ClustalW programme 

and the consensus sequence was also extrapolated. The symbology is identical to that 
described in Figure 8.1. 
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At ADR1 
At ADR1-Li 
At ADR1-L2 
At ADR1-L3 
Cotton 
Lotus 
Grape 
Maize 
Medicago 
Potato 
Rice 
Sorghum 
Soybean 
Tomato 
Wheat 

EMDEN 

GEMT EG 

GEMGET 

TGEMESt 
TGEMESJ 
TGEMTKMI 
TDEMEM[ 

•*; :*.** : •*.* * * k. 

Consensus PKAE 

Figure 8.5 Multiple alignment of the PKAE motif. 

The amino acid sequence alignment of the PKAE motif of all plant clones was performed 

employing the ClustalW programme. The consensus sequence was also extrapolated. The 
symbology is identical to that described in Figure 8.1. 

50 to 63%, 49 to 59% and 46 to 56% sequence identity to ADRI-1-1, ADRlL2 and 

ADRI-1-3 respectively (Table 8.3). In addition ADR1-LI showed greater sequence 

identity to each individual plant clone compared to that of ADRI, ADRI-L2 or ADRI-

L3. These results therefore suggested that the isolated plant sequences might be 

orthologs of ADRI-Li. 

In addition, the most conserved portion among Arabidopsis ADR1 (the NBS domain, the 

NL linker and the LRR domain) and the corresponding region of the 12 plant sequences 

were employed in a phylogenetic analysis. At5g66900 and At5g66910 proteins, which 

showed the greatest sequence identity to ADRI among all Arabidopsis NBS-LRR 

proteins, were included as controls. RMPI, RPP8 and RPS2 were included as 

representative protein of the CNL-B, CNL-C and CNL-D dade respectively, whereas 

RPS4 was employed as an out-grouped control from the TNL family. The phylogenetic 

results showed that all identified plant sequences, apart from the Pinus iaeda 
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control sequences grouped in distant branches of the phylogenetic tree (Figure 8.6). In 

addition, ADRJ-Li was the Arabidopsis gene that exhibited greater phylogenetic 

proximity to all sequences from different plant species. These data therefore confirmed 

that all the plant sequences reported here corresponded to ADRJ homologs, possibly to 

ADR1-LI orthologs. 

ADR1 ADR1-L1 ADR1-L2 ADR1-L3 At5g669000 At5g669100 

Glycine max 49.4% 54.5% 50.8% 49.4% 36.7% 35.6% 

Gossypium hirsutum 58.9% 62.4% 59.3% 55.8% 37.2% 36.8% 

Lotus japonicus 49.1% 55.6% 55.6% 53.9% 32.9% 34.2% 

Lycopersicon esculentum 52.9% 56.0% 53.6% 51.5% 37.5% 37.2% 

Medicago truncatula 46.8% 50.1% 49.2% 46.2% 33.2% 31.8% 

Oryza sativa 50.0% 53.3% 49.7% 47.6% 34.55 33.3% 

Pinustaeda 41.2% 46.4% 42.3% 43.6% 38.8% 37.8% 

Solanum tuberosum 53.9% 56.9% 55.4% 52.1% 36,5% 33.4% 

Sorghum bicolor 53.2% 57.6% 53.4% 51.3% 36.0% 34.3% 

Triticum aestivum 52.3% 54.5% 50.2% 48.8% 35.2% 34.1% 

Vitis vinifera 52.9% 53.7% 54.1% 53.7% 34.0% 33.6% 

Zea mays 52.1% 52.7% 50.4% 47.6% 38.7% 37.1% 

Table 8.3 Sequence identity rate between Arabidopsis ADRI proteins and putative plant 

homologs. 
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Figure 8.6 Phylogenetic tree of selected NBS-LRR plant sequences 

Phenogram representation of the neighbour-joining tree was constructed according to the 

method of Saitou and Nei (1987). The aligned amino acidic sequences of the NBS-NR-LRR 

portion of each protein were created by ClustalW and they were subsequentially analysed by 

Phylodendron ClustalW to generate the phylogenetic tree. Branch lengths are proportional to the 

genetic distance. The accession number (reported in Table 8.2) was omitted. 

Diagram representation of the neighbour-joining tree generated employing the same 

parameter as described in (a). Branch lengths are proportional to the genetic distance. 
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8.5 Discussion 

The availability of the complete Arabidopsis genome sequence and the ever-increasing 

sequence data from many other plant species have opened terrific opportunities for 

comprehensive phylogenetic analysis (TAIR, 2000; Whitelaw et al., 2003; Kikuchi et al., 

2003). The number of complete sequences, EST and partial genomic sequences of NBS-

LRR genes identified in the last decade was particularly prosperous (Bai et al., 2002; 

Bendahmane et al., 2002; Cannon et al., 2002; Meyers et al., 2003; Mondragon-

Palomino et al., 2003). Several conserved motifs in the NBS domain of the proteins 

encoded by NBS-LRR genes have been identified and large scale functional analyses 

have been employed to characterise the function of these motifs (Meyers et al., 1999; 

Pan et al., 2000; Tornero et al., 2002; Hammond-Kosack and Parker, 2003). 

To date, the most extensive investigation of an NBS-LRR gene was RPM]; 95 

independent rpm] alleles were isolated and the number of loss-of-function mutations in 

the NIBS domains was significantly greater than in other, less conserved domains of the 

protein (Grant et al., 1995; Tornero et al., 2002). However, this nearly saturating 

analysis of the RPM] gene failed to isolate any loss-of-function mutation in the MHDV 

motif located in the NBS domain (Tomero et al., 2002). A complementary large scale 

analysis on the Rx potato gene resulted in the isolation of? independent gain-of-function 

alleles (Bendahmane et al., 2002). Three of these mutations occurred in the NBS domain 

and they were all localized in the RNBS-D and MHDV motifs, suggesting that the 

alteration of these putative negative regulator sequences might lead to gain-of-function 

phenotypes (Bendahmane et al., 2002). The modification of one residue adjacent to the 

methionine (M) in the MHDV core motif was responsible for one gain-of-function 

mutation (Bendahmane et al., 2002). Hence, the MHDV motif might function as a 

regulatory component. The different, perhaps unique MIUDV motif sequence reported 

here for ADR1 proteins might reflect different protein regulation. To confirm this 

hypothesis, individual amino acid substitution analysis and subsequent studies of ADR1 

function will be required. 
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The presence of the non-TIR NBS dade N4 was confirmed in many plant species 

(Cannon et al., 2002; Zhu et al., 2002). The N4 dade, which also contained sequences 

from M truncatula, corresponded to the ADRJ group (Cannon et al., 2002). The failure 

to identify homologs of the N4 dade from several Poaceae families (database search 

took place in January 200 1) suggested that the N4 dade was lost in the monocot lineage 

(Cannon et al., 2002). Here the identification of genes exhibiting significant homology 

to ADRJ, hence members of the N4 dade, was reported in four Poaceae species (O?yza 

sativa, Sorghum bicolor, Triticum aestivum and Zea mays). The previous conclusion that 

the N4 dade was absent in the monocot lineage therefore resulted from the limitation of 

plant sequences. Our results confirmed the presence of the N4 dade in several monocot 

species. 

The identification of only one ADRJ homolog in several plant species argues that ADRJ 

may be an ancient gene, conserved among plant species. The unique observation that 

ADRJ could orchestrate broad disease resistance and simultaneously conferred drought 

tolerance is consistent this hypothesis. Only the Arabidopsis and rice genomes have been 

extensively sequenced to date, whereas several plant databases contain a limited amount 

of sequences (TAIR 2000; Kikuchi et al., 2003). The failure to identify additional ADRI 

homologs might therefore result from a limitation of sequences available to date. The 

stringent threshold employed to search for ADRJ homologs might also have prevented 

the identification of additional ADRJ sequences. 

The four Arabidopsis ADRJ genes exhibited great sequence homology and they formed 

a distinct phylogenetic dade (Mondragon-Palomino et al., 2002; Grant et al., 2003). 

These observations suggested that the presence of four ADRJ genes resulted from 

sequence duplication. The recent duplications of Arabidopsis NBS-LRR genes normally 

occurred in physical chromosomal proximity. In contrast, gene duplications in distant 

chromosomal positions were largely the consequence of segmental chromosome 

duplication and rearrangement, rather than the independent duplication of individual 

genes (Baumgarten et al., 2003; Meyers et al., 2003). The four ADRJ genes were located 
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in distant positions on three separate chromosomes; therefore ADRJ gene duplication 

was not the consequence of recent, local chromosome duplication or rearrangement. 

Comprehensive Arabidopsis analysis also revealed that a minority (18 genes) of 

duplicated NBS-LRR homologs failed to show physical proximity, as described here for 

ADRJ genes (Baumgarten et al., 2003; Meyers et al., 2003). However, many of these 

genes were located in segmentally duplicated regions of the genome (Baumgarten et al., 

2003; Meyers et al., 2003). The failure of the ADRJ genes to show physical proximity 

was therefore most likely due to segmental chromosome duplication and not a 

consequence of duplication of individual genes, which was an exceptionally rare cause 

of NBS-LRR gene duplication in Arabidopsis (Baumgarten et al., 2003; Meyers et al., 

2003). 

In conclusion, results reported here suggested that ADRI is an ancient gene conserved 

among several plant species and that the presence of four homologous ADR1 genes in 

Arabidopsis was most likely the consequence of segmental duplication. 
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9) Discussion 

9.1 Gene-for-gene hypothesis: putative role of ADR1 and NBS-LRRs 

In this concluding  chapter, I aim to integrate our current understanding of ADRI 

function into disease resistance and abiotic stress signal transduction. A comprehensive 

model describing the potential role of ADR1 is also presented. Finally, recent reports 

hinting at possible crosstalk between biotic and abiotic stress signalling pathways are 

also examined. In contrast, the adsi mutant data are not taken into account in this 

section, having been comprehensively discussed in Chapter 3. 

9.1.1 Overexpression of ADR1 conveys broad-spectrum disease resistance 

ADRJ belongs to the NBS-LRR gene family that consists of 149 Arabidopsis genes 

(Meyers et al., 2003) and represents one of the largest and yet elusive classes of plant 

genes. The conventional hypothesis regards NBS-LRRs as resistance genes encoding for 

proteins involved in the specific recognition of avirulence gene products secreted during 

pathogen attack (Flor, 1971; Jones and Dangi, 2001). 

Data presented here show that ADRJ overexpression confers disease resistance against 

several pathogens. In addition to adri, a number of transgenic plants expressing NBS-

LRR genes under the control of the CaMV35S promoter have been described (Mindrinos 

et al., 1994; Ellis et al., 1999; Stokes et al., 2000). However, a broad-spectrum resistance 

similar to that exhibited by adri plants has only been reported for transgenic plants 

ectopically expressing At4g16890 (Stokes et al., 2002). The overexpression of this 

Arabidopsis NBS-LRR gene, which maps to an R gene cluster on chromosome 4, 

conveyed broad-spectrum disease resistance in the heritable but metastable bal 

epigenetic variant (Stokes et al., 2002). In addition, the CaMV35S-driven 

overexpression of Pto, an R gene encoding a serine/threonine kinase, has also been 

reported to confer broad-spectrum disease resistance (Tang et al., 1999). 
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9.1.2 Role of NBS-LRRs in plants 

NBS-LRRs may also hold additional and more complex functions to that of recognition 

of specific avirulence factors. For example, a point mutation in the RPS5 gene partially 

compromised gene-for-gene resistance to several bacterial and fungal isolates, whereas 

the conventional hypothesis would predict only the loss of resistance to bacteria carrying 

the avirulence gene AvrPphB, which is recognised by RPS5 (Warren et al., 1998). It is 

therefore possible that RPS5 retains an additional function that enables the establishment 

of disease resistance in response to the recognition of several bacterial and fungal 

isolates. In this context, the "guard hypothesis" proposes a role for NBS-LRR proteins as 

general component of defence responses (van der Biezen and Jones, 1998; Dangl and 

Jones, 2001). In this model, NBS-LRRs perceive (or "guard") a complex of proteins (or 

"gardee" molecules) that can interact with avirulence factors. Plant recognition of 

avirulence molecules modifies the gardee complex and triggers defence responses that 

activate the NBS-LRR guard protein (Dangi and Jones, 2001). This hypothesis is also 

consistent with the requirement for the NBS-LRR protein Prf (guard) to trigger defence 

responses following the interaction between AvrPto and Pto (gardee molecules) (Martin 

et al., 1993; Salmeron et al., 1996; van der Biezen and Jones, 1998). 

The hypothesis of a more complex and diverse role for NBS-LRR proteins is firmly 

consistent with the data presented within this work. ADRJ is rapidly induced prior to SA 

accumulation following pathogen attack and also by wounding and SA treatment. In 

contrast, ET and JA do not appear to trigger ADRJ expression. Moreover, the transient 

expression of ADRJ results in enhanced disease resistance, perhaps not unsurprisingly in 

itself, but it also confers increased drought tolerance and salt sensitivity. These 

observations have not been reported for any other NBS-LRR genes investigated to date. 

It is therefore possible that these features may be unique for the ADRJ gene. 

These observations are reinforced by fact that ADR1 and the three ADR1-LIKE proteins 

exhibit distinct domains observed only among NBS-LRR proteins belonging to the small 

ADR1 class. In addition, data presented within this work suggest that ADRJ is an 

ancient gene conserved among several phylogenetically distant plant species. It is 
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therefore tempting to speculate that the well-conserved and unique domains of ADR1 

and ADR1 -LIKE proteins may retain putative functions required for the establishment of 

broad-spectrum disease resistance and increased drought tolerance. This hypothesis is 

consistent with the systemic induction of ADRJ after pathogen recognition and the fact 

that SA, which is a general defence phytohormone, can mediate ADRJ expression (Grant 

et al., 2003). Alternatively, these unique ADR1 domains may be required for the 

recognition of evolutionary conserved ligands, such as PAMPs (pathogen-associated 

molecular patterns), preserved amongst several different pathogens (Numberger and 

Brunner, 2002). In this scenario, ADR1 may retain a role similar to that of animal Toll-

like receptors in pathogen recognition (Baker et aL, 1997; Janssens and Beyaert, 2003). 

Furthermore, ADR1 may also possess other unknown functions in addition to the role 

played in disease resistance. 

Several questions still remain unanswered regarding the role of ADR1. Firstly, it will be 

important to uncover whether the expression profile and the overexpression phenotype 

of ADRJ are unique for this transcript, conserved among ADRJ-LIKE genes or common 

to a large number of NBS-LRR genes. In addition, analysis of transgenic plants blocked 

in ADR1 expression might also help to understand ADR1 function. 

9.2 Models of the putative ADR1 function 

9.2.1 Putative regulation of ADR1 during the establishment of defence resistance 

From the results presented within this work, it is possible to speculate on the position of 

ADR1 in signal transduction pathways which lead to disease resistance and drought 

tolerance (Figure 9.1). The expression of ADR1 is likely induced immediately after the 

recognition of avirulence gene products, since ADRJ expression was observed within 1.5 

hours following Psi' DC3000(avrB) challenge. There is an absence of experimental 

evidence to suggest that avirulence factors are directly perceived by ADR1. However, it 

cannot be ruled out that an avirulence factor may be recognised directly by ADR1 or via 
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Figure 9.1 Proposed model of adrl-mediated signalling pathway. 

This schematic model integrates ADR1 into different signal transduction pathways which 

engaged disease resistance downstream of the Avr-R interaction. A simplified representation 

of the drought tolerance transduction pathway is also included. Gj defines positive 

feedback loops, whereas -H indicates negative regulations. Box defines proteins that are 

required for the establishment of pathways in which they are presented. 
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a multiprotein recognition complex. The rapid accumulation of ADRJ might also be 

triggered or amplified by an "early" defence signalling molecule, such as H202, which is 

induced within one hour following Psi' DC3000(avrB) challenge (Grant et al., 2000). In 

contrast, the accumulation of SA that follows the recognition of avirulence factors is a 

"late" defence response (Delaney et al., 1995; Shah and Klessing, 1996). Hence, the SA-

induced transcription of ADRJ most likely acts through a SA-mediated positive feedback 

loop (Grant et al., 2003). The initial ADRJ expression and defence response may be 

subsequently amplified by this SA-mediated feedback loop (Shirasu et al., 1997). 

Recognition of avirulence factors also triggers programmed cell death, which in turn 

induces SA production and may therefore indirectly stimulate ADRI expression 

reinforcing the SA-mediated amplification loop. 

This hypothesis is strengthened by the analysis of adri edsi and adri nahG double 

mutants. Both SA accumulation and EDS1 are required for the adrl-mediated activation 

of downstream pathways, most likely because SA and EDS 1 are required in order to 

establish a SA-mediated feedback loop (Grant et at., 2003; Chini et al., 2004). Indeed, 

EDS 1 has been previously found to function within a SA-mediated amplification loop 

(Feys et al., 2001; Loake, 2001). In contrast NDR1, which is usually required for 

signalling by CC-NBS-LRR proteins (Aarts et al., 1999), does not appear to be required 

to establish adrl -mediated disease resistance, since adri ndrl plants are not 

compromised in enhanced defence resistance. Alternatively, adrl-mediated disease 

resistance may be established through both NDR1-independent and NDR1-dependent 

pathways. 

In summary, the current model for ADR1 signalling suggests an early induction of 

ADRJ expression following plant recognition of avirulence factors; however it remains 

unknown whether ADR1 directly perceives avirulence factors. Plant recognition of 

avirulence factors also triggers production of signalling molecules, such as ROTs, and 

induces early defence responses, which in turn promote the accumulation of SA. 

Increased SA levels, not only activates downstream defence pathways, but also 

reinforces the expression of ADRJ via a SA-mediated positive feedback loop. Although 
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experimental evidence is absent, it is assumed that a negative regulator mechanism 

limits the amplification of defence responses that otherwise would result in plant death. 

9- 2.2 Putative molecular function ofADRi in the establishment of disease resistance 

ADRJ encodes a protein with an NBS-LRR structure; it is therefore reasonable to 

assume that ADR1 acts at a similar level of the defence pathway to the Avr-R interaction. 

In this context, the obvious speculation is that signal transduction pathways, which are 

normally triggered following avirulence recognition, are constitutively activated in adri 

mutants. However, the precise molecular mechanism by which ADR1 acts remains 

unidentified. Two hypotheses ascribing putative mechanisms by which ADR1 may lead 

to the constitutive activation of downstream signalling pathways are contemplated below. 

Sequence analysis of ADR1 suggests that the LRR domain may function in ligand 

binding or protein-protein interaction (Jones and Jones, 1996; Thomas et al., 1996), 

whereas the CC region may play a role in dimerization or protein-protein interactions 

(Jones and Jones, 1996; Lupas, 1996). In addition, the CDPK-like domain may activate 

the downstream pathways through a phosphorylation cascade. However, the CPDK-like 

domain of ADR1 lacks the highly conserved serine/threonine kinase subdomain VII that 

includes the kinase active site (Ranks et al., 1988). It is therefore unlikely that ADR1 

retains kinase activity; hence, additional proteins, such as protein kinases, may be 

required to activate downstream pathways. 

Recently, NBS proteins have been revealed to possess ATPase activity and this novel 

class of kinases only share homology with the ATP-binding site of conventional protein 

kinases (Ryazanov et al., 1997). It is therefore possible that ADR1 and additional 

proteins possessing a NBS domain, which contains an ATP-binding site, might also be 

included in this novel ATPase class. At present, studies of the putative ATPase activity 

of NBS-LRRs are however absent and further analyses will therefore be required to 

verify this hypothesis. It is more likely that an ADR1-interacting protein may possess 

kinase activity, which may be required to initiate defence responses. 
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9.2.3 ADR1 may signal through a putative multiprotein complex 

Nonetheless, ADR1 might act within and function via a multiprotein complex in order to 

activate downstream response pathways. In this context, both the CC and LRR domains 

of ADR1 may play a role in protein-protein interactions (Jones and Jones, 1996; Kopp 

and Medzhitov, 1999). Recently, RIN4 has been shown to bind the R proteins Rpm  and 

Rpt2 in addition to a still unidentified protein (Ellis and Dodds, 2003). Furthermore, 

RTN4 also appears to interact directly with the avirulence protein AvrB, AvrRPM1 and 

AvrRpt2; this interaction causes Rll'14 modification or degradation which in turn 

activates downstream defence pathways (Mackey et al., 2002; Mackey et al., 2003; 

Axtell et al., 2003). These two models are not mutually exclusive. 

In a similar fashion ADR1 might also function in a multiprotein complex that finely 

regulates the activation of downstream disease resistance pathways. The overexpression 

of ADRJ may result in the modification and/or constitutive activation of this putative 

multiprotein complex that would switch on downstream defence pathways. The SA-

mediated amplification loop, which appears necessary to amplify ADRJ expression, 

might be also required for the direct or indirect post-transcriptional modification, 

regulation and/or activation of this putative multiprotein complex. Indeed, both adri 

nahG and adri edsi plants, which are compromised in the SA-mediated amplification 

loop, accumulate moderate levels of ADR1 transcripts but fail to activate downstream 

resistance pathways. This hypothesis is therefore consistent with the observation that the 

SA-mediated amplification loop is required to activate adrl -mediated disease resistance. 

9.2.4 Putative regulator mechanism ofadrl-mediated drought tolerance 

Broad-spectrum disease resistance is established in adri plants via a SA-dependent 

mechanism (Grant et al., 2003). In addition, gene expression analysis revealed that 

DREB2A transcription was induced in wild-type plants following exogenous application 

of the SA analogue, BTH (Chini et al., 2004). A putative role for SA in the 

establishment of drought tolerance in adri plants was therefore examined through the 

analysis of a series of adri double mutants and transgenic lines. 
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adri lines containing either the nahG transgene or the edsi mutation, but not nprl 

mutation, exhibited substantially attenuated adri -mediated drought tolerance. The adri-

mediated drought tolerance signalling therefore appears to be dependent on SA and 

EDS1 but independent of NPR1 (Figure 9.1). NPR1 is required to induce defence gene 

expression and systemic resistance via a signalling pathway downstream from SA (Cao 

et al., 1994), whereas EDS1 is required for signalling by TIR-NBS-LRR proteins to 

establish disease resistance (Parkers et al. 1996). However, EDS1 also functions within a 

SA-dependent amplification loop (Feys et al. 2001; Loake, 2001). The SA-mediated 

signal amplification loop necessary to establish adrl-mediated disease resistance may 

therefore be also required for the development of drought tolerance in adri plants. In 

order to address whether SA is a key signal in adrl-mediated drought tolerance or a 

regulator of ADRJ gene expression further analyses, such as characterization of 

TA::ADRJ nahG or CaMV35S: :ADRJ nahG lines, will be required. 

In addition, drought tolerance in adri lines is significantly reduced, but not completely 

abolished, by abil. These results suggest that both ABI1-dependent and ABI1-

independent mechanisms can induce drought tolerance in adri plants. In addition, a still 

unidentified SA- and ABIl-independent mechanism might also contribute to the 

establishment of adrl-mediated dehydration tolerance (Figure 9.1). However, analysis 

of adri nahG abil triple mutant line will be required to confirm this hypothesis. 

9.3 Biotic and abiotic resistance pathway crosstalk 

The main focus of this final section is the analysis of cross-talk between signalling 

pathways that regulate defence responses against biotic and abiotic stresses. Indeed, data 

presented within this thesis encourages the reassessment of the traditional perception of 

biotic and abiotic stress signalling pathways regarded as distinct disciplines. In addition, 

ever-increasing genetic and genomic evidence that hints at possible connections between 

the establishment of disease resistance and drought tolerance are also discussed 

(Chinnusamy et al., 2004; Seki et al., 2004). In agreement with these observations, 
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inoculation of Arabidopsis plants with growth-promoting rhizobacteria has been shown 

to enhance protection against both Er,vinia carotovora and dehydration stress (Timmusk 

and Wagner, 1999). 

9.3.1 Biotic and abiotic stress pathways can regulate similar subsets of genes 

Several pathogen-responsive genes were induced by abiotic stress and vice-versa. For 

example, chestnut cysteine protease CSC, rice PIB genes, fig tree TRI trypsin inhibitor, 

Brassica napus PGIP genes and pepper SAR82A were all regulated by both pathogen 

attack and abiotic stresses (Pernas et al., 2000; Wang et al., 2001; Kim et al., 2003a; Li 

et al., 2003; Lee and Hwang, 2003). Specifically, chestnut CSC expression was triggered 

in response to fungal infection, wounding, cold, JA and salt treatments (Pemas et al., 

2000). TRI transcription in fig tree was upregulated by wounding and SA treatment but 

downregulated by dehydration stress (Kim et al., 2003a). In contrast, B. napus PGIP 

genes were induced in response to flea beetle infection, mechanical wounding and low 

temperature treatment (Li et al., 2003). The NBS-LRR FIB genes were highly transcribed 

in response to salt stress, SA, JA, ET and ABA treatments, whereas low temperature 

downregulated the expression of FIB genes (Wang et al., 2001). 

Overall, these data suggested that defence gene expression was up-regulated by 

environmental conditions that would favour pathogen infection. However, gene 

regulation reflects the nature of the pathogen infection, which is favoured in different 

environmental conditions. This hypothesis is consistent with the different regulation of 

cold-responsive genes upon attack from different pathogens (Wang et al., 2001; Li et al., 

2003). Low temperature may increase the infection success of one group of pathogens, 

whereas it might be detrimental to the infection process of a different group of 

pathogens. 

Alternatively, defence genes might protect plants from damage, such as oxidative stress, 

caused by both biotic infection and abiotic disturbances. Consistent with this hypothesis, 

most of the 7 Arabidopsis glutathione peroxidase genes exhibited increased expression 

in high salt and osmotic conditions and they were also induced by ABA, SA or JA 
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treatments (Rodriguez-Milla et al., 2003). Similarly, the fig tree peroxidase gene was up-

regulated upon wounding, dehydration, JA and ABA treatments (Kim et al., 2003a). 

Peroxidase activity might therefore protect plants from increased oxidant concentration 

triggered by both biotic and abiotic stresses. Consistent with this hypothesis, the 

overexpression of the reductase YKJ gene in transgenic rice lines enhanced the plant 

antioxidants defence system, which in turn conferred both resistance against rice blast 

and tolerance to salinity and UV treatments (Uchimiya et al,, 2002). 

9.3.2 Biotic and abiotic defence pathways can be co-ordinately modulated by the same 

regulator elements 

It is therefore currently acknowledged that biotic and abiotic stress signalling pathways 

can regulate the activation of a common subset of defence genes (Chinnusamy et al., 

2004; Seki et al., 2004). Furthermore, these two signalling pathways might be modulated 

by the same regulatory mechanisms. For example, the tobacco MEK2 kinase is activated 

in response to pathogen recognition and abiotic stress sensing (Kim et al., 2003b). In 

turn, MEK2 induced ET biosynthesis and the expression of several defence genes. It is 

noteworthy that different subsets of genes were activated by either biotic or abiotic 

stresses via the same MEK2 signalling pathway (Kim et al., 2003b). Similarly, the 

constitutive overexpression of the tobacco transcription factor TSI1 leads to increased 

pathogen-related gene transcription, disease resistance and improved tolerance to salt 

stress (Park et al., 2001). These results strengthened the hypothesis that overlapping 

signalling cascades could be required for responses to biotic and abiotic stresses (Parker 

et al., 2001; Kim et al., 2003b; Chiimusamy et al., 2004). 

However, it has been shown that the same kinase cascade could positively regulate 

disease resistance and negatively regulate abiotic stress tolerance pathways. The 

silencing of the IvL4PK5 gene in rice plants resulted in kinase activity suppression, 

constitutive accumulation of defence genes transcripts, broad-spectrum disease 

resistance and enhanced hypersensitivity to dehydration, salt and cold stress (Xiong and 

Yang, 2003). In contrast, rice plants overexpressing MAPKS exhibited increased kinase 

activity and enhanced tolerance to dehydration, cold and salt stresses (Xiong and Yang, 
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2003). Therefore, the MAP kinase MAPK5 acts as a signalling regulator that can 

positively modulate drought, salt and cold tolerance and negatively regulate disease 

resistance. These results are also consistent with the hypothesis that the same signalling 

cascade can be responsible for the fine regulation, either activation or suppression, of 

separate biotic and abiotic defence pathways. 

A potential role for ABA in plant disease resistance has not been explored in detail. 

However, a recent study reported that Arabidopsis plants pre-treated with ABA or 

exposed to drought conditions showed increased susceptibility to Pst DC3000(avrB) 

(Mohr and Cahill, 2003). In addition, abal plants exhibited enhanced resistance to the 

virulent pathogen P. parasitica (Mohr and Cahill, 2003). Therefore, an increased 

concentration of ABA could alter the establishment of plant defence in response to 

pathogen attack. 

9.3.3 The use of microarray technology to investigate cross-talk between biotic and 

abiotic stress pathways 

Microarray technology has been employed to analyse the expression patterns of several 

thousand genes following specific biotic and abiotic stress conditions and an ever-

increasing amount of data has been accumulated (Bray, 2002; Wan et al., 2002; Seki et 

al., 2004). Several independent studies investigated the complex gene expression 

reprogramming that Arabidopsis plants orchestrate in response to dehydration, salt, cold 

and ABA treatment (Chen et al., 2002; Fowler and Thomashow, 2002; Seki et al., 

2002a; Seki et al., 2002b). These studies revealed that many genes encoding proteins 

with anti-pathogenic function were significantly upregulated in response to abiotic 

stresses; for example, PRJ-like, RPS4-like, nematode resistance and PGIP genes (Chen 

et al., 2002; Fowler and Thomashow, 2002; Seki et al., 2002a). The transcription of 

several genes encoding detoxifying enzymes, such as glutathione S-transferases and 

peroxidases, was also triggered following abiotic stress challenge. 

In a similar fashion, several transcriptomic studies analysed gene expression following 

pathogen attack or treatments with defence hormones such as SA, JA and ET (Maleck et 
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al., 2000; Schenk et al., 2000; Reymond et al., 2000; Cheong et al., 2002; Narusaka et al., 

2003). Gene expression of a number of constitutive disease resistance mutants was also 

investigated (Maleck et al., 2000; Brodersen et al., 2002; Lorenzo et al., 2003). 

Response to biotic challenges resulted in the transcriptional modulation of many genes 

encoding proteins responsive to different abiotic stresses. For example, several RD, EDR, 

catalase and ascorbate-peroxidase genes were upregulated. On the other hand, a number 

of abiotic stress responsive genes were downregulated following pathogen challenge 

(Maleck et al., 2000; Schenk et al., 2000; Seki et al., 2033a). 

These results were therefore consistent with the hypothesis that separate abiotic and 

biotic signalling pathways could co-ordinately modulate the expression of overlapping 

subsets of stress responsive genes. In particular, a group of genes was tightly co-

regulated by biotic and abiotic stresses; these genes encode proteins required for the 

detoxification mechanisms that prevent cellular damage caused by oxidative stress, a 

common consequence of both biotic and abiotic challenges. The previously described 

microarray results of plants transiently expressing ADR] are also firmly consistent with 

these reports. 

9.3.4 Conclusion 

In conclusion, the establishment of both disease resistance and drought tolerance 

following engagement of the adrl-mediated signalling pathway suggests, at least in 

some cases, there may be significant overlap between biotic and abiotic stress defence 

pathways. However, the study of biotic and abiotic pathway cross-talk prompts 

numerous questions. The coordinate studies of stress responses employing recently 

available microarrays containing the complete set of Arabidopsis genes and the 

simultaneous quantification of several phyto-hormones and signalling molecules will 

provide a better understanding of the complex cross-talk established among distinct 

signalling pathways (Schmelz et al., 2003; Trethewey, 2004; Hilson, et al., 2003; 

Craigon et a!, 2004). Uncovering the identity and regulation of common nodes 

modulating biotic and abiotic stress signalling may be crucial for rational crop design. 
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