108 research outputs found

    Metastable supersymmetry breaking in extended supergravity

    Get PDF
    We consider the stability of non-supersymmetric critical points of general N = 4 supergravities. A powerful method to analyse this issue based on the sGoldstino direction has been developed for minimal supergravity. We adapt this to the present case, and address the conceptually new features arising for extended supersymmetry. As an application, we investigate the stability when supersymmetry breaking proceeds via either the gravity or the matter sector. Finally, we outline the N = 8 case

    Discovery of a strongly phase-variable spectral feature in the isolated neutron star RX J0720.4-3125

    Get PDF
    We present the discovery of a strongly phase-variable absorption feature in the X-ray spectrum of the nearby, thermally-emitting, isolated neutron star RX J0720.4-3125. The absorption line was detected performing detailed phase-resolved spectroscopy in 20 XMM-Newton observations, covering the period May 2000 - September 2012. The feature has an energy of ~750eV, an equivalent width of ~30eV, and it is significantly detected for only ~20% of the pulsar rotation. The absorption feature appears to be stable over the timespan covered by the observations. Given its strong dependence on the pulsar rotational phase and its narrow width, a plausible interpretation is in terms of resonant proton cyclotron absorption/scattering in a confined magnetic structure very close to the neutron star surface. The inferred field in such a magnetic loop is B_loop ~ 2 x 10^{14} G, a factor of ~7 higher than the surface dipolar magnetic field.Comment: 6 pages, 4 figures; ApJ Letters accepte

    Magnetar-like activity from the central compact object in the SNR RCW103

    Get PDF
    The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the SNR RCW 103, named 1E 161348-5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) onboard Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348-5055, also coincident with a large long-term X-ray outburst. Here we report on Chandra, NuSTAR, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to July 2016). We find the emission properties of 1E 161348-5055 consistent with it being a magnetar. However in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized neutron star, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the "anti-magnetar" scenario for other CCOs.Comment: 6 pages, 3 figures. To be published in the Astrophysical Journal Letters; replaced to match the version accepted for publication on 2016 August 1

    Rotational dynamics of optically trapped polymeric nanofibers

    Full text link
    The optical trapping of polymeric nanofibers and the characterization of the rotational dynamics are reported. A strategy to apply a torque to a polymer nanofiber, by tilting the trapped fibers using a symmetrical linear polarized Gaussian beam is demonstrated. Rotation frequencies up to 10 Hz are measured, depending on the trapping power, the fiber length and the tilt angle. A comparison of the experimental rotation frequencies in the different trapping configurations with calculations based on optical trapping and rotation of linear nanostructures through a T-Matrix formalism, accurately reproduce the measured data, providing a comprehensive description of the trapping and rotation dynamics.Comment: (21 pages, 5 figures

    Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunnelling-AFM, Light-Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells

    Get PDF
    Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM are prepared by electrospinning, and their properties assessed by scanning electron, atomic and lateral force, tunnelling, and confocal microscopy, as well as by attenuated total reflection Fourier transform-infrared spectroscopy, photoluminescence quantum yield and spatially-resolved fluorescence. Highlighted features include ribbon-shape of the realized fibers, and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interaction of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. This method might be applied to other electron donor-electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.Comment: 35 pages, 9 figure

    Investigating p62 Concentrations in Cerebrospinal Fluid of Patients with Dementia: A Potential Autophagy Biomarker In Vivo?

    Get PDF
    Several studies have revealed defects in autophagy in neurodegenerative disorders including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). SQSTM1/p62 plays a key role in the autophagic machinery and may serve as a marker for autophagic flux in vivo. We investigated the role of p62 in neurodegeneration, analyzing its concentrations in the CSF of AD and FTD patients. We recruited 76 participants: 22 patients with AD, 28 patients with FTD, and 26 controls. CSF p62 concentrations were significantly increased in AD and FTD patients when compared to controls, which persisted after adjusting for age (p = 0.01 and p = 0.008, respectively). In female FTD patients, p62 positively correlated with the neurodegenerative biomarkers t-Tau and p-Tau. A significant correlation between CSF p62 concentrations and several clinical features of AD was found. Our data show that p62 is increased in CSF of AD and FTD patients, suggesting a key role of autophagy in these two disorders. The levels of p62 in CSF may reflect an altered autophagic flux, and p62 could represent a potential biomarker of neurodegeneration

    Minimal Stability in Maximal Supergravity

    Get PDF
    Recently, it has been shown that maximal supergravity allows for non-supersymmetric AdS critical points that are perturbatively stable. We investigate this phenomenon of stability without supersymmetry from the sGoldstino point of view. In particular, we calculate the projection of the mass matrix onto the sGoldstino directions, and derive the necessary conditions for stability. Indeed we find a narrow window allowing for stable SUSY breaking points. As a by-product of our analysis, we find that it seems impossible to perturb supersymmetric critical points into non-supersymmetric ones: there is a minimal amount of SUSY breaking in maximal supergravity.Comment: 27 pages, 1 figure. v2: two typos corrected, published versio

    A geometric bound on F-term inflation

    Get PDF
    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the K\"ahler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.Comment: 14 pages, improved analysis, references added, matches published versio

    Gazing at the ultraslow magnetar in RCW 103 with NuSTAR and Swift

    Get PDF
    We report on a new NuSTAR observation and on the ongoing Swift X-Ray Telescope monitoring campaign of the peculiar source 1E 161348–5055, located at the centre of the supernova remnant RCW 103, which is recovering from its last outburst in 2016 June. The X-ray spectrum at the epoch of the NuSTAR observation can be described by either two absorbed blackbodies (kTBB1 ∼ 0.5 keV, kTBB2 ∼ 1.2 keV) or an absorbed blackbody plus a power law (kTBB1∼ 0.6 keV, Γ ∼ 3.9). The observed flux was ∼9 × 10−12 erg s−1 cm−2, ∼3 times lower than what observed at the outburst onset, but about one order of magnitude higher than the historical quiescent level. A periodic modulation was detected at the known 6.67 h periodicity. The spectral decomposition and evolution along the outburst decay are consistent with 1E 161348–5055 being a magnetar, the slowest ever detected.The results reported in this paper are based on observations obtained with Swift and NuSTAR. Swift is a NASA mission with participation of the Italian Space Agency and the UK Space Agency. The NuSTAR mission is a project led by the Californian Institute of Technology. AB, PE, and NR are supported by an NWO Vidi Grant (PI: Rea). FCZ and NR are supported by grants AYA2015-71042-P and SGR2014-1073. We thank the PHAROS COST Action (CA16214) for partial support and the referee for the comments
    corecore