80 research outputs found

    Upper bound on Hot Dark Matter Density from SO(10)SO(10) Yukawa Unification

    Get PDF
    We study low-energy consequences of supersymmetric SO(10)SO(10) models with Yukawa unification ht=hNh_t = h_N and hb=hτh_b = h_\tau. We find that it is difficult to reproduce the observed mb/mτm_b/m_\tau ratio when the third-generation right-handed neutrino is at an intermediate scale, especially for small tanβ\tan \beta. We obtain a conservative lower bound on the mass of the right-handed neutrino MN>6×1013M_N > 6 \times 10^{13}~GeV for tanβ<10\tan \beta < 10. This bound translates into an upper bound on the τ\tau-neutrino mass, and therefore on its contribution to the hot dark matter density of the present universe, Ωνh2<0.004\Omega_\nu h^2 < 0.004. Our analysis is based on the full two-loop renormalization group equations with one-loop threshold effects. However, we also point out that physics above the GUT-scale could modify the Yukawa unification condition hb=hτh_b = h_\tau for \tan \beta \lsim 10. This might affect the prediction of mb/mτm_b/m_\tau and the constraint on MNM_N.Comment: LBL-35774, RU-94-51, 18 pages, plain LaTeX, two PostScript figures appended in uuencoded forma

    Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET.

    Get PDF
    We would like to thank M.Oren (Weizmann Institute of Science) for kindly providing the MDM2 antibodies, the core facility for Bioinformatics and Expression Analysis (BEA, Karolinska, Huddinge) for assisting in massive parallel sequencing and computational infrastructure, as well as E Dratkiewicz, AS Nilsson, and JF Martinez for excellent technical assistance.Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.This work was funded by the following grants: the Swedish Cancer Society (grant number: 170176), the Swedish Research Council (VR-MH 2014-46602-117891-30), Novo Nordisk Foundation (NNF20OC0060590), Danish National Research Foundation (project CARD, DNRF 125), the Danish Cancer Society (R204-A12617-B153), DFF 1026-00241B (all granted to JB), and the Grant agency of the Czech Republic: GACR 20-28685S (granted to ZS and MM). Open access funding provided by Karolinska Institute.S

    XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency

    Get PDF
    Background Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. Objective We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. Methods We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. Results We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. Conclusion Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency

    Complex responses of global insect pests to climate warming

    Get PDF
    Although it is well known that insects are sensitive to temperature, how they will be affected by ongoing global warming remains uncertain because these responses are multifaceted and ecologically complex. We reviewed the effects of climate warming on 31 globally important phytophagous (plant-eating) insect pests to determine whether general trends in their responses to warming were detectable. We included four response categories (range expansion, life history, population dynamics, and trophic interactions) in this assessment. For the majority of these species, we identified at least one response to warming that affects the severity of the threat they pose as pests. Among these insect species, 41% showed responses expected to lead to increased pest damage, whereas only 4% exhibited responses consistent with reduced effects; notably, most of these species (55%) demonstrated mixed responses. This means that the severity of a given insect pest may both increase and decrease with ongoing climate warming. Overall, our analysis indicated that anticipating the effects of climate warming on phytophagous insect pests is far from straightforward. Rather, efforts to mitigate the undesirable effects of warming on insect pests must include a better understanding of how individual species will respond, and the complex ecological mechanisms underlying their responses

    COVID-19 vaccine acceptance and hesitancy in low- and middle-income countries

    Get PDF
    Widespread acceptance of COVID-19 vaccines is crucial for achieving sufficient immunization coverage to end the global pandemic, yet few studies have investigated COVID-19 vaccination attitudes in lower-income countries, where large-scale vaccination is just beginning. We analyze COVID-19 vaccine acceptance across 15 survey samples covering 10 low- and middle-income countries (LMICs) in Asia, Africa and South America, Russia (an upper-middle-income country) and the United States, including a total of 44,260 individuals. We find considerably higher willingness to take a COVID-19 vaccine in our LMIC samples (mean 80.3%; median 78%; range 30.1 percentage points) compared with the United States (mean 64.6%) and Russia (mean 30.4%). Vaccine acceptance in LMICs is primarily explained by an interest in personal protection against COVID-19, while concern about side effects is the most common reason for hesitancy. Health workers are the most trusted sources of guidance about COVID-19 vaccines. Evidence from this sample of LMICs suggests that prioritizing vaccine distribution to the Global South should yield high returns in advancing global immunization coverage. Vaccination campaigns should focus on translating the high levels of stated acceptance into actual uptake. Messages highlighting vaccine efficacy and safety, delivered by healthcare workers, could be effective for addressing any remaining hesitancy in the analyzed LMICs.Publisher PDFPeer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Reducing child mortality in the last mile: a randomized social entrepreneurship intervention in Uganda

    Full text link
    The delivery of basic health products and services remains abysmal in many parts of the world where child mortality is high. This paper shows the results from a largescale randomized evaluation of a novel “social entrepreneurship” approach to health care delivery. In randomly selected villages a sales agent was locally recruited and incentivized to conduct home visits, educate households on essential health behaviors, provide medical advice and referrals, and sell preventive and curative health products. Results after three years show substantial health impact: under-5 child mortality was reduced by 27% at an estimated cost of $71 per life-year saved
    corecore