29 research outputs found

    Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems

    Get PDF
    Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish

    An online Hebbian learning rule that performs Independent Component Analysis

    Get PDF
    Independent component analysis (ICA) is a powerful method to decouple signals. Most of the algorithms performing ICA do not consider the temporal correlations of the signal, but only higher moments of its amplitude distribution. Moreover, they require some preprocessing of the data (whitening) so as to remove second order correlations. In this paper, we are interested in understanding the neural mechanism responsible for solving ICA. We present an online learning rule that exploits delayed correlations in the input. This rule performs ICA by detecting joint variations in the firing rates of pre- and postsynaptic neurons, similar to a local rate-based Hebbian learning rule

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Inference of feedforward vs feedback connectivity.

    No full text
    Inference of feedforward vs feedback connectivity. I will describe efforts to disentangle the influence of these kinds of connectivities on oscillatory dynamics and the cancellation of redundant inputs.Non UBCUnreviewedAuthor affiliation: University of OttawaFacult

    Cogn Neurodyn DOI 10.1007/s11571-009-9092-2 RESEARCH ARTICLE Effects of the anesthetic agent propofol on neural populations

    No full text
    Abstract The neuronal mechanisms of general anesthesia are still poorly understood. Besides several characteristic features of anesthesia observed in experiments, a prominent effect is the bi-phasic change of power in the observed electroencephalogram (EEG), i.e. the initial increase and subsequent decrease of the EEG-power in several frequency bands while increasing the concentration of the anaesthetic agent. The present work aims to derive analytical conditions for this bi-phasic spectral behavior by the study of a neural population model. This model describes mathematically the effective membrane potential and involves excitatory and inhibitory synapses, excitatory and inhibitory cells, nonlocal spatial interactions and a finite axonal conduction speed. The work derives conditions for synaptic time constants based on experimental results and gives conditions on the resting state stability. Further the power spectrum of Local Field Potentials and EEG generated by the neural activity is derived analytically and allow for the detailed study of bi-spectral power changes. We find bi-phasic power changes both in monostable and bistable system regime, affirming the omnipresence of bi-spectral power changes in anesthesia. Further the work gives conditions for the strong increase of power in the d-frequency band for large propofol concentrations as observed in experiments
    corecore