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Abstract

Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a
more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective
cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown.
In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like
circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe
contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which
incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in
vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the
feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts
the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting
fish.
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Introduction

For many neural systems, prediction and cancellation of

redundant signals constitutes one of the most convenient features

for efficiently processing behaviorally meaningful information.

When processing sensory input, for instance, neural circuits must

be able to discriminate a novel stimulus from the background of

redundant or non-relevant signals. A well-known situation in

which such a discrimination may be highly advantageous is the so

called ‘‘cocktail party problem’’, in which a particularly relevant

signal is extracted from a mixture containing other unimportant

signals [1,2]. This is known to be useful, for instance, to identify

particular voices or sounds for both human and nonhuman

animals [1,3], or find and identify mates among conspecifics and

heterospecifics [4]. However, the concrete mechanisms that the

brain may employ to discriminate and cancel redundant

information are presently unknown. It would be, therefore,

convenient to identify and closely study natural systems displaying

such a cancellation phenomenon, in order to isolate its

fundamental principles. Of special interest might be the mecha-

nisms able to conduct the cancellation process over a wide range of

realistic conditions, such as canceling redundant signals of different

intensities (or with time varying intensities due, e.g., to the relative

movement of the receiver and the signal sources) while keeping

novel stimuli intact.

The understanding of such a contrast-invariant cancellation

mechanism would be beneficial not only for the ‘‘cocktail-party

problem’’ in auditory systems, but also for visual neuroscience.

Indeed, contrast invariance is a well known and well studied

feature of the visual cortex, and particularly of the V1 area [5,6]. A

number of ingredients are thought to play a role in contrast

invariance in V1, such as inhibition [7,8], gain control [9,10] or

membrane fluctuations [9,11], to name a few. However, many of

the strategies giving rise to contrast invariance in V1 are still highly

debated [12,13] or simply starting to be uncovered [9,14].

Consequently, new findings about how contrast invariance is

achieved in other sensory modalities such as the simpler

electrosensory system might contribute to understand contrast

invariance in V1 and possibly to identify common principles for

the corresponding biophysical mechanisms. The contrast-invariant

cancellation sketched above stands as an interesting potential

example.

A system able to perform cancellation of redundant information

is known to exist in the electrosensory lateral-line lobe (ELL) of the

weakly electric fish Apteronotus leptorhynchus [15–17]. This fish

continuously emits a wave-type, high frequency (600*1000 Hz)

sinusoidal electric organ discharge (EOD) to sense its surroundings

and communicate with conspecifics. Small objects such as prey

produce spatially localized amplitude modulations (AMs) in the

EOD. On the other hand, the presence of conspecifics or own-
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body movements such as tail bending induce spatially global AMs

in the EOD. For example, since each fish has a fixed EOD

frequency, the proximity of two fish produces an AM in the form

of a beat of fixed frequency but time-varying amplitude due to the

relative motion of the animals. The depth of these AMs, referred

commonly as contrast, may depend on physical quantities such as

the distance to conspecifics or the amplitude of the tail movement,

in the case of global signals, or the size of (or distance to) the prey,

in the case of local signals. Both spatially local and global AMs are

encoded by electroreceptors (mainly, P-units) that densely cover

the body of the fish [18]. In particular, AMs in the EOD are

reliably encoded with a modulation in the firing rate of the P-units,

which provide feedforward input to pyramidal neurons in the

ELL. Interestingly, it has been found that a subpopulation of these

pyramidal neurons, called superficial pyramidal (SP) cells, are able

to respond selectively to local stimuli (i.e. prey) by removing low-

frequency global redundant signals (i.e. tail bending), and thus

maximizing the response to novel local stimuli [15,19]. In the

following, we will denote this pathway from the P-units to the SP

cells as the feedforward pathway.

This removal of global signals is also present in another family

of electric fish, namely the mormyrid weakly electric fish, although

the mechanism differs significantly [20,21]. These fish emit a

pulse-type electric field instead of a wave-type field. The

pacemaker generating the EOD also conveys spike discharges

internally to ganglion neurons, to which the electroreceptors

project. Through the so called anti-Hebbian spike-time-dependent

plasticity, these ganglion neurons use this internal timing

information (corollary discharge) to cancel out the redundant

responses from the electroreceptors caused by the fish’s own

pulses, thus allowing an efficient detection of novel stimuli [22].

For both pulse-type and wave-type fish, the cancellation of global

signals is achieved via the activation of a neural circuit denoted, by

convention, as the indirect feedback pathway (it should be noted,

however, that it is actually a longer feedforward circuit from the P-

units to the SP cells via DP cells, as we will see below). Such a

circuit, which we will denote here simply as feedback pathway,

involves a granule cell population, the eminential granularis

posterior (EGp), which projects a massive number of parallel fibers

(PFs) onto SP cells.

In spite of this common architecture, the cancellation mecha-

nism for the wave-type fish A. leptorhynchus is significantly different

from the one used by pulse-type fish, not only because of the

nature of its EOD (wave-type), but also because the corollary

discharge is not present in wave-type fish. For the particular case

of wave-type fish, the presence of burst-induced long-term

plasticity in the PF-SP cell synapses [23], together with the

segregation of the PFs into frequency-specific channels [16,24],

shapes the feedback input to the SP cell into a negative image of the

redundant sensory stimulus, causing destructive interference and

effectively canceling the global stimulus in the SP cells [16].

Little is known, however, about how different stimulus contrasts

are processed in such a circuit. The AM contrast level of a signal is

strongly correlated with the spatial proximity of the source, either

for local input (i.e. distance to the prey) or global input (i.e.

distance to conspecifics) [25], and thus constitutes a highly variable

feature of the stimulus. Ideally, the fish would be expected to

detect the presence of prey (and properly estimate the corre-

sponding distance) while in the presence of other conspecifics at

different distances from them. This would imply that SP cells

display some form of cancellation for global stimuli of different

contrasts. Neither the existence of such a cancellation nor its

concrete dependence with the stimulus contrast have been

experimentally quantified to date. Furthermore, the mechanisms

that might lead to this phenomenon are not known. Arguably, a

linear system would be expected to maintain the output as a given

fraction of the input, regardless of the input strength. The neural

circuits of interest here, however, are known to involve nonlinea-

rities, including not only the input-output nonlinearity arising from

the spiking threshold, but also the ones due to the presence of

bursting and spike-timing dependent plasticity rules. Due to these

nonlinearities, the particular configuration of PFs needed to

properly cancel signals with a given contrast might be unable to

provide consistent cancellation for another contrast. Also, since

PFs are already segregated into different frequency-specific

channels [16], it is unlikely that this strategy could be followed

again to form contrast-specific channels, due to the limited

number of PFs available. Therefore, both novel experimental

observations and models are needed to address the question of

cancellation of global stimuli with different contrasts.

In this work, we tackled this problem by employing a

combination of experimental and modeling methods. We

performed in vivo extracellular measurements of SP neuron activity

for global and local stimuli of different AM frequencies and

contrasts. Our measurements clearly show the existence of

contrast-invariant cancellation of global stimulus for a wide,

behaviorally relevant range of stimulus contrasts. Although a slight

decay in cancellation for increasing contrasts is observed, the

cancellation level decays only about 10% across all the range of

contrasts considered, and thus cancellation remains at all times at

values over 80% (100% being a perfect cancellation of the global

signal). In addition, a computational model is fitted to our in vivo

data and the in vitro results presented in [23], and it is employed to

explore the origins of this contrast invariance. Our model is based

on those from previous studies [16,24], which considered a

feedback pathway composed of multiple delayed PFs projecting

onto SP cells, with the strength of these PFs determined by a burst-

induced long-term plasticity rule. In the model presented here, we

also consider several novel mechanisms needed to understand

contrast-invariant cancellation, which are: (a) the explicit modeling

of the P-unit input/output characteristics, which affect both the

feedforward and feedback pathways, and (b) the presence of

saturating effects in the feedback pathway. We have also

considered that plasticity does not shape PFs quickly, so that the

model will have to deal with contrast levels that it was not

explicitly trained to cancel. This last point is extremely important,

as a system in which PFs are allowed, via long-term plasticity, to

Author Summary

The ability to cancel redundant information is an impor-
tant feature of many sensory systems. Cancellation
mechanisms in neural systems, however, are not well
understood, especially when considering realistic condi-
tions such as signals with different intensities. In this work,
we study, employing experimental recordings and com-
putational models, a cerebellar-like circuit in the brain of
the weakly electric fish which is able to perform such a
cancellation. We observe that in vivo recorded neurons in
this circuit display a contrast-invariant cancellation of
redundant stimuli. We employ a mathematical model to
explain this phenomenon, and also to gain insight into
several dynamics of the circuit which have not been
experimentally measured to date. Interestingly, our model
predicts that time-averaged contrast levels of around 15%,
which are commonly experienced by interacting fish,
would shape the circuit to behave as observed experi-
mentally.

Contrast-Invariant Cancellation of Redundant Input
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relearn how to cancel every new stimulus would be highly

unrealistic.

Employing this highly detailed model fitted to our in vivo data,

we find that (i) in spite of nonlinearities associated with PF

plasticity, the level of AM contrast is successfully transmitted

through the feedback pathway, matching the contrast arriving at

SP cells through the feedforward pathway and explaining the

contrast-invariant cancellation found in vivo, (ii) the PF weights

associated with a given contrast are able to provide good

cancellation for other contrast levels, and (iii) the minor decay of

cancellation with contrast is due to the saturation of activity in the

feedback pathway. In addition, our model predicts that, in order to

properly cancel global signals at the experimentally observed

levels, the average contrast level that must drive the PF learning

lies around 15% contrast levels. Interestingly, contrast levels

around this one are commonly found within the natural

environment for communication signals in the weakly electric fish

[25]. This hypothetical link between social interaction and

redundancy reduction in neural circuits might be used to uncover

neural or synaptic mechanisms which are elusive to standard in vivo

or in vitro techniques.

Results

Experimental observations
The goal of this study is to understand the mechanism that

neurons in the ELL of the weakly electric fish employ to cancel

spatially redundant signals with different contrasts. To do that,

we first analyze experimental data from in vivo recordings. Fig. 1

shows the extracellularly recorded response of superficial

pyramidal (SP) neurons in the ELL under different stimuli. As

one can see, SP cells respond strongly and in a phase-locked

fashion to local stimuli (Fig. 1A, black), whereas the response is

much broader in phase, and smaller in amplitude, when the

stimulus is global (Fig. 1A, gray). By considering peri-stimulus

time histograms (PSTH), we confirm that, within the range of

frequencies of the AM considered, the response to global signals

is effectively cancelled (Fig. 1B). As previous studies have

addressed, the cancellation is most pronounced within this AM

frequency range [16], and it is achieved by the emergence of a

negative image of the original signal, generated by the feedback

pathway [15,16]. More importantly, whereas previous studies

[16,24] characterized cancellation for a single stimulus strength,

in this study we present the stimulus at different contrast levels

(i.e. different strengths). We observe that the stimulus is

cancelled efficiently for a wide range of input contrast levels,

with cancellation values over 80% in all cases. Cancellation was

measured by the ratio in gain between the local and global

responses (see Methods for details).

Furthermore, the level of cancellation appears to be approxi-

mately the same for all contrasts, from very low (3:25%) to very

high (30%) values (Fig. 1C), with a minor decay of cancellation

levels observed for very high contrasts. Contrasts higher than 30%
were not considered in this study, since P-unit electroreceptors

encode AMs in a nearly linear manner up to 25*30%. After that,

the activity of P-units saturates and biologically relevant informa-

tion can not be processed in the same quasi-linear regime [26].

When averaging over all the frequencies considered, we can

observe that the degradation of the cancellation process (defined as

the complementary of the frequency-averaged cancellation, i.e.

Degrad~100%{Cancel) is restricted to a range between 5% and

15%, and therefore the cancellation of global signals only varies in

about 10% for all the range of biologically relevant contrast levels

(Fig. 1D).

Modeling local stimulation
We first consider the response of the SP neuron to local stimuli.

The dynamics of the neuron membrane potential is modeled

following a leaky integrate-and-fire (LIF) formalism [27,28] with

an extra burst-inducing mechanism. The subthreshold dynamics

of the membrane potential is given by

tm
dV

dt
~{Vz IzsjL(t)zS(t)½ �zzDAP(t), ð1Þ

where ½ �z denotes rectification of the input, S(t) is the input from

the P-units encoding the sensory stimulus, DAP(t) is the burst-

inducing mechanism needed to reproduce the behavior of in vivo

SP cells [29,30], and IzsjL(t) is a Gaussian low-pass filtered

noise of mean I and standard deviation s to fit the model to

baseline (also referred here as spontaneous) activity conditions (i.e. no

AM). As in the standard LIF formalism, when V reaches a certain

fixed threshold, a spike is recorded, and after that V remains at a

certain resting value during the absolute refractory period of the

neuron.

When stimulated by a sinusoidal input, the model SP neuron

responds with a modulation of its firing rate. Fig. 2A shows the

maximum firing rate (solid black line) as a function of the

amplitude of the sinusoidal-like signal entering the SP cell from the

P-units. In color lines, we see the maximum firing rates observed

experimentally for different contrasts entering the P-units. By

looking at the intersections of the black curve with the color lines,

we can determine the relationship between input contrast to the P-

unit and input modulation to the SP cell (i.e. the P-unit output).

The resulting input-output relationship for the P-units is shown in

Fig. 2B. As we can see, the P-units display some degree of

saturation for high input contrasts (of about 30%). This agrees with

previously known results [26] which show that P-units behave as

linear encoders for relatively low contrasts (up to 20%), and

beyond that point they start to saturate. We can now easily include

such a saturation effect into our model (see section Methods).

Once this nonlinearity has been considered, the response of our

model agrees very well with the experimental observations for

local stimuli, as one can see in Fig. 2C, for different AM

frequencies and contrasts.

Modeling global stimulation
We consider now the situation in which we have a spatially

global stimulus in the system. The presence of the global stimulus

activates the feedback pathway which projects onto the SP cells via

the PFs. This implies considering an extra term in the dynamics of

the membrane potential of the SP neuron, which is now

tm
dV

dt
~{Vz IzsjL(t)zS(t)½ �zzDAP(t)zC ws{gVð Þ: ð2Þ

In the last term, C is the strength of the feedback (which will

depend nonlinearly on the contrast since the feedback pathway is

also driven by P-unit activity), and the term {gV mimics the

effect of disynaptic inhibition driven by the PFs. More precisely,

since the reversal potential of the inhibitory synapse (GABA-A

receptors) is close to the resting potential of the SP cell [31],

inhibition was modelled as an extra shunting conductance [32].

The quantity ws is the strength of the particular PF which is active

(i.e. which is transmitting a burst arriving from a granule cell) at

the phase segment s of the signal cycle. For simplicity, we assume

that only one PF is active at a given time (see section Methods for

details).

Contrast-Invariant Cancellation of Redundant Input
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At the SP cell, we distinguish between small and large bursts,

since the characteristics of the learning rule will be different

depending on the burst size [23]. Adopting the burst definitions

which were explicitly characterized in [23], we will consider the 2-

spike burst as the typical small burst, and the 4-spike burst as the

typical large burst (see Fig. 3A, and section Methods for further

details on burst definition). Small and large bursts have different

roles in the cancellation process, as it was found in [16]: large

bursts cover long periods associated with low-frequency input,

while small bursts have a similar role for high frequencies and are

also important in the timing of the plasticity for these input

frequencies.

For burst timing purposes, the temporal location of a given burst

is identified as the temporal location of its first spike. The burst-

STDP learning rule employed, based on in vitro experimental

recordings [23], is shown in Fig. 3B.

Every time a pair of presynaptic-postsynaptic bursts occur, each

PF weight ws is updated according to the following rule

Figure 2. Fitting of the model to local response. (A) Maximum firing rate (solid black line) reached by the model SP neuron as a function of the
amplitude of the sine wave S(t) resembling the input from P-units. The AM frequency is 2 Hz, and similar responses were found for other
frequencies. Colored lines indicate the maximum firing rate observed in the experiments for four different AM contrasts. (B) By considering the
crossing points between the black line and the colored lines in panel A, we establish a dependence between AM contrasts (i.e. input to P-units) and
amplitude of the signal arriving at the SP cell, S(t), and thus obtaining an AM input-output function for the P-units. Points denote frequency-
averaged quantities, while bars denote the standard deviation of each average. (C) Once this P-unit nonlinear feature is considered, the model (solid
lines) is able to properly fit the experimental observations (points, shown previously in Fig. 1B) for different input frequencies and contrasts of the
local stimulus. For panels A and C, the color code for contrast is red (3:25% contrast), green (7:5%), blue (15%) and violet (30%).
doi:10.1371/journal.pcbi.1003180.g002

Figure 1. In vivo electrophysiological observations. (A) Response of SP cells to AM stimuli, for the case in which the signal is local (black) or
global (gray). For each case, a single extracellular recording trial and a raster plot are shown. (B) Cancellation of global stimuli for different AM
frequencies. Upper row corresponds to local stimulation while lower row corresponds to global stimulation. In each panel, the mean PSTH (n~12
neurons from several fish) for contrasts of 3:25% (red), 7:5% (green), 15% (blue) and 30% (violet) is displayed. The inset in the lower left panel shows
the extent of the typical error bars for one of these curves (30%). (C) Percentage of cancellation as a function of input contrast, for different AM
frequencies. (D) Degradation of the signal cancellation, averaged over all AM frequencies considered, as a function of input contrast.
doi:10.1371/journal.pcbi.1003180.g001

Contrast-Invariant Cancellation of Redundant Input
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ws?ws{wsg2,4 1{
ts{tB

L2,4

� �2
" #

z

, ð3Þ

where g2 and L2 are used if the burst of the SP cell is a small burst,

and g4 and L4 are used if it is a large burst. The presynaptic burst

is assumed to match the burst type occurring at the SP cell. Once

again, ½ �z symbolizes rectification, which means this rule is

applied to all weights whose phase segment began at a time ts as

long as Dts{tBDvL. Beyond this range, the weights are

unchanged.

Note that the burst-induced depression found in vitro is purely

depressing and would eventually decrease all PF weights to zero.

To avoid that, we include a non-associative potentiating rule so

that the weights slowly relax back to wmax with a time constant of

Figure 3. Parallel fiber weights and learning contrast. (A) Example of small and large bursts as defined in the text. Two spikes occurring within
a 15 ms window constitute a small burst, whereas four spikes within 45 ms constitute a large burst. (B) Burst-driven learning rules for small and large
bursts, as a function of the timing Dt of the presynaptic and postsynaptic bursts. Points indicate data from in vitro recordings (taken from [23], each
point being averaged over 100 trials in the experimental plasticity protocol), and lines are the fit employed in the model. (C) PF weights as a function
of the stimulus phase, for different learning contrasts AL. (D) Firing rate of the SP cell as a function of the stimulus phase, for local (gray) and global
(colored) stimulation. The learning contrast was set at AL~15% and the test contrast was 3:75% (left panel) or 30% (right panel). For both panels,
lines correspond to model predictions and points to experimental data shown previously in Fig. 1B.
doi:10.1371/journal.pcbi.1003180.g003

Contrast-Invariant Cancellation of Redundant Input
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tw according to

tw
dws

dt
~wmax{ws ð4Þ

This rule maintains the independence of synaptic weights and is

biologically plausible, since Lewis and Maler [33] demonstrated a

presynaptic form of synaptic enhancement in PFs. This enhance-

ment was elicited when PF discharge occurred, without the need of

a concomitant pyramidal cell burst response. Such a form of

potentiation lasted for many minutes, and a weak potentiation

with this or larger tw would have been difficult to detect

experimentally. Furthermore, similar potentiation rules have been

experimentally observed in mormyrid fish, and it has been shown

to play an important role in cancellation in these fish [34], in

which there is a corollary discharge.

Below we will see that the homeostatic time constant tw may

play an interesting role in the learning dynamics. The response of

the SP neuron model was always recorded after a certain learning

period, during which all PF weights reached their equilibrium state.

One of the main points to take into account is that the strength

of the PF synapses will depend on the stimulus contrast employed

during the learning period (we denote such contrast level as learning

contrast, AL). This is due to the fact that the occurrence of SP

bursts, which are the driving events of PF plasticity, depends

strongly on the stimulus contrast. The effect of the contrast on PF

weights is shown in Fig. 3C, where one can see that the

distribution of PF strengths is similar for different learning

contrasts AL, although not exactly the same. In all cases, the

sinusoidal stimulus shapes the PF weights to form a negative image

of the signal, which constitutes the basis of the cancellation

phenomenon. The weights for different learning contrasts are

almost identical around the peak of the stimulus (corresponding

here to a phase of 3p=2), where the SP neuron is mainly driven by

the stimulus (and noise plays a relatively minor role), and bursts

are more likely to occur. The variability of PF weights with the

learning contrast is higher for the signal trough (around phase of

p=2), where bursts occur scarcely and are not able to efficiently

shape the weight distribution. As we can see, PF weights around

the signal trough are higher for high learning contrasts. This is due

to the fact that a high-contrast stimulus induces a strong

hyperpolarization in the SP membrane potential at the stimulus

trough, lowering the chances of bursting for that stimulus phase

and preventing the depressing LTP rule to decrease the weights.

Interestingly, even though both the feedforward and the

feedback inputs are sinusoidally driven, the distribution of PF

weights significantly deviates from a sinusoidal function, as one

may clearly observe from Fig. 3C. Such a deviation has its origin

in the highly nonlinear nature of burst dynamics in SP cells.

Indeed, it is known that bursting rate displays a highly nonlinear,

exponential-like relationship with input (see Fig. 5B in [24]). Since

bursts are the main events driving the PF learning, the nonlinear

input-burst relationship is translated into a nonlinearity in the PF

weight distribution emerging from learning. This, successively,

turns the feedback input to the SP cell into a highly nonlinear

contribution that prevents treatment of the cancellation phenom-

enon as a trivial linear summation of sine waves that are out of

phase with one another.

In Fig. 3D, two examples of cancellation of a global signal of a

frequency of f ~3 Hz, a learning contrast of AL~15%, and

different stimulus contrasts are shown (in each panel, the

corresponding SP neuron response to same-frequency, same-

contrast local signals is displayed in gray for comparison purposes).

As we can see, the cancellation is very good in both cases, although

the model overestimates the degree of cancellation for the 30%
contrast case (violet line in right panel). In both panels,

experimental data are plotted with points and model results are

displayed with lines.

Emergence of contrast invariance
The PF weights are modified via long-term plasticity mecha-

nisms, which operate in the order of minutes to hours. Since

changes in stimulus contrast associated with behavior (i.e. tail

bending becoming narrower) may occur on the scale of

milliseconds to seconds, one can not expect that the weights will

be able to adapt fast enough to new presented contrasts in realistic

situations. More likely, PF weights will reach some stationary level

(as a result of some time-averaged contrast level provided by day-

to-day natural stimuli), and then such an equilibrium level will be

used to cancel any particular contrast level that the fish receives. In

such a situation, we could expect certain differences in the quality

of the cancellation depending on the learning contrast assumed in

the simulations.

The model prediction of the cancellation level for different

frequencies and contrasts, and assuming different learning

contrasts, is shown in Fig. 4. In all cases, the cancellation levels

are maintained on values over 80% for different contrast levels, as

in the experimental observations (see Fig. 1C), and thus indicate

the emergence of contrast invariance in the cancellation of global

stimuli in the model. It is particularly interesting to note, from the

model results, that the specific learning contrast chosen has little

impact on the results, contrary to what was expected, and that the

levels of cancellation are broadly the same for all AM frequencies

(with high frequencies having slightly lower values, as seen also in

the experimental data).

Note that, in addition to this counterintuitive lack of impact of

the learning contrast in the cancellation, some qualitative

differences appear with respect to the experimental data.

Concretely, for all frequencies and learning contrasts, the level

of cancellation slightly increases with the stimulus contrast

according to the model predictions, while in the experiments it

slightly decreases. The origins of such model/experiment discrep-

ancy may be diverse, but it is reasonable to assume that they could

be mainly due to the lack of a key ingredient in the model’s

feedback pathway, since the response of the model and experiment

for the local signal were in good agreement both qualitatively and

quantitatively (see Fig. 2).

Since the discrepancy is mostly evident for large contrast values,

one might want to consider, as a first approach, possible features of

the real system that may be particularly relevant at those

conditions. A relevant factor to consider here is the existence of

saturation effects along the feedback pathway. Saturation is

inherent to all spiking neurons, and high contrast input to granule

cells might cause saturation in two, not mutually exclusive ways:

higher contrasts might evoke discharge in a greater number of

granule cells and/or it might evoke a higher frequency discharge

in granule cells. The first situation was examined by Berman and

Maler who used stronger PF stimulation to activate greater

numbers of PFs; clear saturation of the PF response was observed

(Fig. 5B in [32]). The second scenario was studied by Lewis and

Maler [35]; this study demonstrated a saturating SP response to

increasing PF stimulation frequency (Fig. 5 in [35]). The presence

of saturation in the PF-SP synapses imposes a limit in the feedback

strength for increasing stimulus contrasts, which would naturally

lead to a devaluation of the cancellation quality for high contrasts

as observed in vivo. Furthermore, it is reasonable to think that, in

addition to this PF saturation, the bursting activity of granule cells

might as well saturate for high enough contrast values (since only a

Contrast-Invariant Cancellation of Redundant Input
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limited number of granule cell bursts can be generated within one

stimulus cycle), adding an extra layer of saturation to the feedback

pathway.

To take into account this saturating behavior in the model, we

consider a small correction in the feedback gain for high contrast

values by introducing a factor Gs in the last term of Eq. 2. This

extra factor will be one for low contrasts (i.e., 3:25% and 7:5%)

and less than one of higher values (we chose Gs~0:85 for 15%
contrast and Gs~0:65 for 30% contrast, although other values are

possible without qualitatively varying our conclusions). The

cancellation levels with this new assumption are shown in

Fig. 5A, for different frequencies and learning contrasts. As we

can see now, the slight decrease in cancellation levels with

increasing contrasts is present for all learning contrasts, in

agreement with experimental data (shown as a gray line in panels

of Fig. 5A for a direct visual comparison). Therefore, we have

identified, via a computational model, the saturation of the

feedback pathway as a plausible origin of the slight cancellation

decrease with contrast. Our model also provides some insight into

the plausible saturating dynamics of these granule cells, which

have not been recorded in vivo to date.

Optimal learning contrast
A second conclusion that we can make from our modeling

results concerns the level of cancellation for different learning

contrasts. As we can see in Fig. 5A, considering different learning

contrasts has now a clear effect on the cancellation properties, as

opposed to the case in which saturation of the feedback pathway

was not considered. Indeed, high learning contrasts shift the

cancellation curves to higher values, leading to higher cancellation

levels for all contrasts and frequencies considered. The closest

agreement with the experimental data is obtained with a learning

contrast of AL~15%, as we can see in Fig. 5A and more clearly in

Fig. 5B. Lower learning contrasts lead to low values of overall

cancellation, mainly because PF weights are tuned to cancel only

weak modulations and are not able to overcome a large-amplitude

signal completely. On the other hand, higher learning contrasts

produce an over-cancellation at low input contrasts (that is, the SP

cells have a peak of firing rate where the stimulus displays a

trough, and vice versa) which is not observed experimentally. Due

to the saturation of the feedback pathway with contrast, the PFs

have to span a wider range of weight values in order to obtain a

proper cancellation, and this has a negative effect when trying to

cancel low contrast signals. Therefore, the optimal learning

contrasts are those situated just below the appearance of a strong

saturation in the feedback pathway, but strong enough to allow

cancellation for the whole regime of linear encoding of P-units,

around 15%. For such an optimal learning contrast, individual

firing rate responses are also shown in Fig. 6 as a function of the

global stimulus phase for different contrasts and frequencies. The

figure also shows the corresponding experimental SP response to

local stimulation for comparison purposes.

It might be argued that AL~15% is only optimal when

compared to the few other values of the learning contrast

considered here. To better characterize the optimal learning

contrast and its robustness, we have employed our model to extend

Figure 4. Cancellation of global stimulus without feedback saturation. Model predictions of the level of cancellation of global signals as a
function of contrast, for different signal AM frequencies (colored lines) and different learning contrasts considered (different panels).
doi:10.1371/journal.pcbi.1003180.g004

Contrast-Invariant Cancellation of Redundant Input

PLOS Computational Biology | www.ploscompbiol.org 8 September 2013 | Volume 9 | Issue 9 | e1003180



our study and to consider other learning contrasts. We consider

now a range of possible learning contrasts (around eleven values

from 3:75% to 30%) and we compute, for each one of them, the

degradation of cancellation as a function of the stimulus

contrast, as in Fig. 5B. For learning contrasts not considered

in the experiments, such as AL~10%, values for the P-unit

adaptation and feedback saturation in the model were obtained

by linear interpolation between known values. We also define a

function which quantifies the discrepancy between the model

prediction for a given AL and the experimental data. The error

Figure 5. Cancellation of global stimulus with feedback saturation. (A) Model predictions of the level of cancellation of global signals as a
function of contrast, for different signal AM frequencies (colored lines) and different learning contrasts considered (different panels). We have
introduced here a factor Gs which takes into account the saturation of the feedback pathway for high stimulus contrasts. The gray line indicates the
frequency-average cancellation levels measured experimentally (from data in Fig. 1C). (B) Degradation level (defined as the quantity
Degrad~100%{Cancel, once frequency is averaged) as a function of the contrast for different learning contrasts (red AL~3:75%, green
AL~7:5%, blue AL~15%, violet AL~30%). Symbols denote experimental data. As we can see, the optimal learning contrast is around 15%.
doi:10.1371/journal.pcbi.1003180.g005
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function is given by

Error~
1

n

Xn

i~1

(xi{yi)
2, ð5Þ

where i runs over all stimulus contrasts considered (up to n~4

for an easier comparison with experimental data), and xi,yi are,

respectively, the model and experimental degradation for the

stimulus contrast i. As we can see in Fig. 7A, the error function

is minimal for AL~15%. Considering surrounding contrast

levels with similar error function values would give us a range of

optimal learning contrast of 12%*20% contrast levels, which

correspond to reasonably low error levels in the figure.

Interestingly, contrast levels around this range are commonly

found within the natural environment of the weakly electric fish

(Yu et al., personal communication). In particular, it has been

experimentally shown that the presence of free-swimming

conspecifics induces a certain range of contrast levels in the

electric fish, being these levels centered and more common

around 15% (see Fig. 3B in [25]), in strong agreement with the

optimal contrast level predicted by our model.

In addition to identifying an optimal learning contrast around

15%, our model gives us insight into the dynamics of weak PF

potentiation. As it has been argued, the potentiation rule is hard to

Figure 6. Cancellation at different frequencies and contrasts. Comparison between experimental data (points) and model predictions (lines)
for the cancellation of a global signal for different AM frequencies (columns) and contrasts (red 3:75% contrast, green 7:5% contrast, blue 15%
contrast, violet 30% contrast). In each panel, the corresponding experimentally measured SP response to local stimulus is also shown in gray. The
learning contrast chosen for the model was AL~15%, which optimizes the agreement between model predictions and experimental data.
doi:10.1371/journal.pcbi.1003180.g006
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find experimentally, since it is expected to work at very long time

scales and would therefore have a hardly appreciable effect during

in vitro recordings [23] (associative potentiation rules have been,

however, found in mormyrid fish [34]). To study the potentiation

time scale in detail, we evaluate the error measurement defined

above as a function of the learning contrast, for different values of

the potentiation time constant tw. As Fig. 7B shows, different tw

values lead to different error curves. Time constants of *1000 s or

above yield mainly the same results, i.e. the optimal learning

contrast lies around 15%. Smaller time constants significantly

deviate from this value, which is to be expected since a small time

constant would lead to more rapid forgetting of the phase-specific

synaptic strength and thus significantly modify the learning rule

and the PF weight distributions. The model learning rule would

thus not fit the experimental data anymore. For time constants of

*700 s or lower, the optimal learning contrast is found to be

higher, which makes intuitive sense because the system forgets

faster, but the minimal error reached in these cases is substantially

larger than for larger time constants. This can be clearly seen in

Fig. 7C: the minimal error decreases as tw increases, until a global

minimum is reached for tw^1000 s (corresponding to an optimal

learning contrast of about 15%). This value for the potentiation

time constant is therefore a strong prediction of our model. In vitro

experiments that pharmacologically eliminate the confounding

effects of postsynaptic depression [23] and disynaptic inhibition

[35] should be able to precisely estimate tw and therefore test our

prediction.

Discussion

Removal of redundant information is a key task to accomplish

for an optimal detection of novel stimuli in sensory systems.

Unfortunately, not many neural mechanisms are known to provide

such a filtering under realistic conditions. In this work, we have

analyzed one of the few neural circuits clearly identified as a

system able to cancel redundant information, which involves the

indirect feedback pathway to the ELL of the weakly electric fish

Apteronotus leptorhynchus. Our results, obtained from a combination

of in vivo extracellular recordings and detailed computational

modeling, reveal a plausible framework which explains the

cancellation of redundant information observed in the electric

fish [15,16]. They further reveal that this cancellation displays

contrast invariance over the entire range of behaviorally relevant

contrast levels [26]. The key ingredients for this contrast-invariant

Figure 7. Optimal learning contrast and potentiation time constant. (A) Error function, defined as the sum of the squared distances between
experimental and model points, as a function of the learning contrast. Dashed lines, located at 12% and 20%, enclose the region of learning contrast
levels which give a reasonably good fit (Errorv10) between data and simulations. (B) Same as panel A, but for different time constant values of the
potentiation learning rule for comparison. (C) Minimum of each error curved displayed in panel B, as a function of the potentiation time constant. The
lowest error is obtained for potentiation time constants of about 1000 seconds.
doi:10.1371/journal.pcbi.1003180.g007
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cancellation can be summarized in (i) the efficient transmission of

the contrast level through the (nonlinear) feedback pathway,

resulting in a match of the feedback input to the feedforward signal

in the SP, and (ii) the fact that, when the PFs adjust their synaptic

weights to cancel a given contrast, they provide a good cancellation

input for other contrasts as well. Due to these two features, the

model is able to explain the high levels of cancellation (over 80% at

all times) observed in experiments for a broad range of AM

frequencies and contrasts, thus providing a theoretical framework

for the contrast invariance in cancellation. This theoretical

framework may be helpful to understand other neural systems

where cancellation of redundant signals occurs (such as auditory

systems [36] or other neural circuits confronting ‘‘cocktail party’’

problems [1,2]) and may also provide novel useful points of view to

understand contrast invariance in visual systems [6,9]. In addition,

our finding might be seen as a very simple form of context-specific

adaptation [37], since the adaptation mechanism (the feedback

input into SP cells) would make the SP response different depending

on the behavioral context (e.g. prey vs conspecific).

In order to achieve the good agreement of this model with the

experimental data, an additional ingredient has been necessary to

explain the minor decay of cancellation levels with contrast found

in vivo. According to our modeling results, a weak saturation in the

feedback pathway is a sufficient condition to explain the decay in

cancellation for high stimulus contrasts, and this saturation may

have different sources. It is known, for instance, that a strong PF

stimulation activating a large number of PFs induces a prominent

saturation in the PF transmission [32]. Such a saturation

phenomenon in PFs would be enough to provide the weak level

of saturation needed to explain our experimental findings.

Furthermore, PFs are also known to saturate for increasing

frequency [35], and other factors such as a possible saturation in

granule cell firing or the presence of short-term plasticity

mechanisms found in PF synapses [38] may also contribute to

the saturation of the feedback pathway. In particular, short-term

synaptic depression could be a plausible candidate to induce

feedback saturation, as it can induce synaptic fatigue causing

nonlinear gain control [39] and, when interacting with short-term

facilitation, can produce important effects in the dynamics of

recurrent neural circuits [35,40,41].

While we have assumed in this work that granule cells in the

EGp fire in a bursty fashion and phase-lock to the periodic

stimulus, there is an ongoing debate concerning the propensity of

the granule cells to fire in bursts [42–46]. Importantly, we are

dealing here with a specialized group of cerebellar cells, the

Zebrin-2 negative cells [47], whose firing patterns are not known

to date. However, the presence of granule cells with a strong

bursting behavior is not required for our conclusions to hold. Since

the global stimulus is of a periodic nature, it will likely induce the

clustering of granule cell spikes around a certain range of stimulus

phases, even if the granule cells do not have a tendency to burst. A

simple scaling of the granule cell response with the stimulus, as it

occurs for SP cells, is therefore the only essential requirement of

our model. Similarly, the concrete input/output characteristics of

granule cells do not have a strong impact on our results, as

saturation for large contrasts has already been found experimen-

tally in parallel fibers [32], and therefore it is not necessary to

impose this condition to granule cells.

The possible role of different types of inhibition in the

cancellation of global signals has been experimentally addressed

previously. For instance, Maler et al. [48] presented morphological

evidence suggesting the presence of lateral inhibition (but not

recurrent inhibition), as the one we are considering in our model.

Bastian et al. [49] demonstrated the existence of inhibitory

surrounds for superficial pyramidal cells, but it was later observed

[15] that the cancellation could be completely prevented by

blocking the EGp feedback, and thus suggesting that these

inhibitory surrounds do not have an important role for cancella-

tion. Therefore, the role of other types of inhibition can not be

completely ruled out, but their effects on cancellation have been

found to be much less important than the PF-triggered feedback

inhibition that we are considering in our study. On the other hand,

local input activates feedforward inhibition, but this type of input

does not trigger cancellation as we also illustrate in Fig. 1B.

It is also important to mention that, due to the fact that the same

stimulus is driving both the SP cells (via the feedforward pathway)

and the EGp (via the feedback pathway), parallel fibers will be

naturally time-locked to the stimulus. As a consequence, any initial

phase displacement in the stimulus (with respect to previous

stimuli) will affect both the SP cells and the EGp in the same way

and will not affect the cancellation. Sudden and fast phase shifts

like the ones associated with communication signals (i.e. small

chirps [50]), however, will not be predicted and cancelled by the

present mechanism, and they will be treated as novel stimuli since

they may carry useful behavioral information.

In addition to different stimulus contrasts, we have considered

signals with different AM frequencies in our study. Local signals

(such as prey), which should not be cancelled, usually fall into the

range of frequencies considered here (from 2 to 9 Hz). Such a range

of frequencies lies within the band of good cancellation observed

experimentally and, consequently, we do not observe major

differences among AM frequencies in the cancellation level [16].

A slight decrement in cancellation is however observed for 9 Hz,

which is indeed to be expected since cancellation starts to decay

around 8 Hz and is practically inexistent at 20 Hz [16,24]. On the

other hand, while frequency-specific channels have been identified

in this system [16], the width of a given frequency channel is not

known to date. In our model, we have assumed that frequencies as

close as 2 and 3 Hz are canceled via different frequency-specific

channels, but it might be possible that both frequencies fall into the

cancellation domain of a single channel. However, the detailed

mechanisms that such a broadband channel could employ to cancel

close (but different) frequencies are unknown and they fall out of the

scope of our study. Therefore we assumed here that each frequency

was processed by a specific channel. The good agreement between

our experimental observations and model predictions suggests that

our approach may be indeed adequate.

It is also worth mentioning that the specific definition of burst does

not have a fundamental importance in our model. In particular, the

one used here (i.e. the occurrence of a number of spikes within a

fixed time window) has been chosen for being computationally

adequate, but also for being consistent from a biophysical point of

view. This is explained by the following two factors: (i) the ISI

distribution of SP cells is bimodal [16], with a clear frequency-

independent peak at small ISI values which highlights the existence

of bursting [51], and (ii) in our system, plasticity is not triggered by

single-pulse paired stimulation [23]. The combination of these two

factors suggests that SP bursts are structured and well located in time,

and highlights the importance of bursts as functionally meaningful

events which clearly differ from single spikes.

The PF plasticity rule, as presented in [23], would constantly

weaken PF strength until all synapses would reach zero strength.

To avoid that, a weak, phase-independent potentiation mecha-

nism was considered here following previous studies [16]. This

potentiation rule might have to be extremely slow such that its

effect was not detected in standard in vitro protocols. Such a

plasticity mechanism would therefore be hard to measure for most

direct methods. Aided by our model and experimental findings, we
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were able to predict a reasonable value for the potentiation time

constant, of about tw^1000 s. This estimation constitutes a strong

prediction of our model, and further modeling and experimental

studies will be necessary to corroborate and extend this prediction.

Our model indicates the existence of a certain optimal learning

contrast, which presumably resembles the time-averaged contrast

that should drive the PF plasticity to obtain the cancellation values

observed experimentally. We have found that this optimal learning

contrast lies around 15% contrast levels (or, considering a small

range of contrast levels, around 12%*20%). Interestingly,

contrast levels around this value are commonly found within the

natural environment for communication signals in the weakly

electric fish, such as, for instance, when surrounded by free-

swimming conspecifics [25]. Indeed, assuming that a global AM of

15% contrast level is due to the presence of a conspecific, this

would correspond roughly to a distance of 12*16 cm between

both fish [52]. In addition, this indicates that a close experimental

measurement of the common contrast levels found in the fish’s

natural environment (which has been the goal of recent studies

[25]) might provide a good indirect confirmation of the existence

of weak potentiation rules which are hard to find in in vitro

conditions. Further experimental and modeling work is needed,

however, to clarify these possible links, as well as the impact of

other realistic assumptions in our circuit, such as considering

heterogeneous populations of superficial neurons [53,54].

Finally, the study of cancellation of global signals needs to be

extended to situations in which more realistic stimuli are considered.

Although of remarkable usefulness, the assumption of global

sinusoidal signals would correspond only to the case of a perfectly

periodic tail movement, or to the presence of a static conspecific at a

certain fixed distance. However, tail bending is commonly an

aperiodic movement in real conditions and, in addition, the distance

between two electric fish would constantly vary as they swim. This

implies that the stimulus contrast will vary in time, as for instance

following an Ornstein-Uhlenbeck process as shown by Yu et al. [25],

and such variations are likely to be relevant in the cancellation

process. This constitutes a much more complex situation than the

one studied here (in which each of the contrast levels we have

investigated is constant in time), although preliminary work suggests

that the present framework may be extended to explain the

cancellation for those complex situations as well. For instance, in a

complex global signal constituted by several coexisting frequency

components, each one of them could be cancelled independently by

frequency-specific channels present in the feedback circuit [16].

Furthermore, slow variations in the contrast level for any given

frequency might activate other adaptation mechanisms that could

aid in the cancellation, as we are currently investigating.

Methods

Ethics statement
All experimental procedures were approved by the University of

Ottawa Animal Care Committee.

In vivo electrophysiology
Experimental recordings were performed as in [16]. Briefly,

craniotomy is performed under general anesthesia. During the

experiment the fish is awake but paralyzed with curare and locally

anesthetized. Single-unit extracellular recordings from superficial

pyramidal E cells of the centro-lateral segment of the electro-

sensory lateral line lobe were performed. These cells can be easily

identified based to their location (depth and centro-medial

position), their receptive field, their baseline firing rate and

response properties. Stimuli consisted of amplitude modulations of

the fish’s own electric field. The stimulus was delivered through

two large global electrodes placed on each side of the fish thereby

achieving a global stimulation. For local stimulation, a small dipole

was placed in the center of the cell’s receptive field; the distance

between the dipole and the skin was adjusted to maximally

stimulate the whole receptive field of the cell while avoiding

stimulation of receptors outside the classical receptive field.

Network architecture
To understand the biological mechanisms responsible for

contrast-invariant cancellation of global stimuli, we consider a

simplified model of the ELL and the indirect feedback pathway (see

Fig. 8). AMs of the sensory input are encoded in firing rate

modulations of the P-units. If the stimulus is spatially local, P-units

transmit these modulations to the SP neuron, which projects to other

higher brain regions. If the stimulus is spatially global, the feedback

pathway is also activated (in addition to the feedforward pathway

sketched above) and a population of EEL neurons called deep

pyramidal (DP) cells transmit the signal from the P-units to a granule

cell population, the eminential granularis posterior (EGp), via the

Nucleus praeminentialis (nP). Each granule cell projects through

parallel fibers onto the SP neuron, closing the feedback loop.

In the real system, the cerebellar feedback pathway to the ELL

is bilateral [18,55] and can take several routes before returning to

the ELL. Furthermore, DP cells, which constitute the origin of the

feedback pathway, display a variety of phase relationships with the

stimulus depending on its location (i.e., the side of the body) and

the specific cell type (E-cells, which fire at the signal peak, or I-

cells, firing at the trough) [56,57]. Finally, each granule cell will be

located at a certain position in space and therefore it will be

characterized by a particular distance to the target SP cell. All

these elements together produce a wide range of feedback

temporal delays, suggesting that the PFs can provide feedback to

SP neurons at all possible phases of the global periodic stimulus. In

addition to this, granule cells have been reported to phase-lock to

periodic signals and to burst to sensory stimuli and be silent

elsewhere [43,45,58,59].

Figure 8. Schematic diagram of the model considered. The
network architecture considered in the model involves the feedforward
circuit (in green) and the indirect feedback pathway (in blue), which is
active only for global stimulus.
doi:10.1371/journal.pcbi.1003180.g008
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To include these features in our simplified model, we assume

that (1) the array of PFs provide feedback to SP neurons at all

possible phases of the sensory stimulus, and (2) granule cells in the

feedback pathway respond in a bursty fashion, phase-locked to the

AM frequency signal. We also take into account in the model that

PFs also synapse onto inhibitory interneurons, which provide some

level of inhibition to the SP neuron.

It has also been shown that certain long-term plasticity rules may

adjust the weights of the parallel fibers. According to recent in vitro

experiments, PFs projecting onto SP cells display a long-term

depression (LTD) rule that depends on the timing of presynaptic and

postsynaptic bursts [23]. Such a burst-driven learning rule, combined

with the presence of PFs displaying a wide set of temporal delays, is

thought to be responsible for the generation of a negative image of the

input AMs, providing the substrate for signal cancellation [16].

LIF model
For local stimulation, the SP neuron is modelled following a leaky

integrate-and-fire (LIF) formalism (Eq. 1) with an extra term

accounting for the bursting dynamics (DAP). Noise was introduced

in the system via a low-pass filtered (with cut-off frequency fcut)

Gaussian noise jL(t) of zero mean and variance one. The variance is

later adjusted via the parameter s, and a constant bias I is introduced

to fit the experimental firing rate in spontaneous (i.e. no AMs)

conditions. As in the standard LIF model, a spike is recorded when V
reaches the threshold Vth, and after that V remains at a certain resting

value Vr during the absolute refractory period tref of the neuron.

The EOD signal arriving at electroreceptors can be described,

as a first approach, as a sinewave of amplitude AEOD and high

frequency (fEOD*1000 Hz). The presence of stimuli induces

EOD amplitude modulations of frequency f (%fEOD) and

contrast A, so that the EOD amplitude is also a sinewave given

by AEOD(t)~A sin(2pft). Since electroreceptors encode AMs by

modulating their firing rate, the AM frequency f and the

contrast A are enough to characterize their behavior. The

output firing rate S(t) of the P-unit population, which is driven

by this input, is given by

S(t)~k(A)sin(2pft): ð6Þ

P-units are known to display some level of saturation for high

contrasts [26] (this effect is denoted in the above equation as

k(A)), and we observe such saturation in our in vivo recordings

via the nonlinear response of the SP cell to different stimulus

contrasts. By fitting the model SP cell response to the in vivo

measured SP cell response, we determine the input-output

amplitude relationship of the P-units (see Fig. 2A and B).

The corresponding values are k(3:75%)~0:201, k(7:5%)~
0:275,k(15%)~0:361 and k(30%)~0:485. When using values

other than these ones, linear interpolation was employed to

estimate the new values of k(A). To incorporate the effect of P-

unit adaptation at low frequencies (as in [16]), we multiply the

signal S(t) by a small constant factor of 1:15 for f w5 Hz.

In addition, as electroreceptor input is strictly excitatory, the

input to the SP neuron is rectified and ½ �z in Eq. 1 symbolizes

rectification (that is, ½x�z~x if xw0, and ½x�z~0 otherwise).

This aided us in incorporating the rectified nature of the

pyramidal cell activity into the model. Values for these parameters

are displayed in Table 1.

Bursting mechanism
Superficial cell bursting drives the long-term plasticity rules

operating in the PFs of the feedback pathway. The term DAP(t)

in Eq. 1 models the depolarizing after-potential (DAP), an

injection of current into the soma of the neuron after an action

potential is fired due to presence of active channels in the cell’s

dendrites. This effect has been modeled previously in superficial

cells [29,30], and we adapt the parameter values used in these

works to match the bursting rate of the model to our

experimental observations.

The mechanism responsible for the generation of bursting is the

following: after the cell fires (V~Vth) at time tn, it will receive a

DAP (i.e. a small current injection) a short time later, as long as the

previous time the cell fired is not too recent. This additional

stimulation is modeled as a difference in alpha functions s(t,z) (Eq.

8), one generated by the soma voltage, and the other by some

mean dendrite voltage. However, if the time interval between this

spike time tn and the previous spike time tn{1 is less than the

refractory period of the dendrite, rd , then the DAP is inactive for

the current spike. The refractory period rd is modeled as a

dynamic variable rd (t) that changes according to a secondary

variable, b, which is updated for each spike. The time just after the

most recent spike was fired is referred as tzn . The equations

governing the DAP [30] are

DAP(t)~

0 if t{tnvrs

afs t{tn,bb(tzn )
� �

{s(t{tn,c)g if t{tnwrs and tn{tn{1wrd (tzn )

0 if t{tnwrs and tn{tn{1vrd (tzn )

8>><
>>:

ð7Þ

s(t,z)~
te

{t
z

z
ð8Þ

rd (t)~m3zm4 b(t) ð9Þ

Table 1. Parameter values for the equations of the model
which approximate experimental data.

Parameter Value

Vth 1

Vr 0

tm 7 ms

tref 0.7 ms

I 0.59

s 0.768

g 1.44

fcut 500 Hz

tw 980 s

wmax 1.5

g2 0.0018

g4 0.0036

Lw2
10 ms

Lw4
100 ms

doi:10.1371/journal.pcbi.1003180.t001
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db

dt
~{b=tbz m1zm2 b2

� �X
n

d(t{tn) ð10Þ

The parameters used in the above equations are listed in Table 2.

Parallel fibers
The feedback pathway is initiated by DP cells, which do not

exhibit global cancellation behavior since they do not receive

feedback, and these cells project onto the nucleus praeminentialis

(nP) which in turn projects onto EGp granule cells. Finally, granule

cells project massive numbers of excitatory PFs to the ELL, where

they provide input to SP cells as well as local interneurons (stellate

cells). The stellate cells in turn inhibit the SP cells via shunting

GABA-A receptor channels.

Due to difficulties in recording them, the firing activity of EGp

granule cells in the electric fish is not known. Similar granule cells

in mammals, however, have been shown to respond to sensory

input [43,58] and to phase-lock their bursting to sinusoidal input

[45]. We assume here, therefore, that the activity of each PF is one

burst per stimulus period.

Considering the natural distribution of temporal PF delays (see

details on network architecture above), the total bursting PF input

was assumed to be continuous in time. In the model, the feedback

cycle associated with the stimulus cycle was discretized into

segments of 2:5 ms each. This implies that the number of segments

changes with the AM frequency considered (for instance, we

would have 200 feedback segments for a 2 Hz stimulus, and 100
segments for an 4 Hz stimulus). Each segment, labeled s, becomes

active at time ts, has a global strength C (common for all PFs) and

a synaptic weight ws (particular for each PF, see Eq. 2), and then

becomes inactive at tsz2:5 ms. Each segment is associated with

the activity of a given PF for simplicity, although it could be

associated with the activity of a certain set of coincident PFs as

well. The total excitatory feedback input is therefore a step-wise

continuous and periodic signal given by Cws, for each segment s as

time moves from segment to segment during a period. Disynaptic

inhibition, which is also modulated by PF activity, is modeled as an

extra shunting conductance {gV .

The global strength of the feedback is driven by DP cells, which

in turn are driven by P-units. This implies a dependence of the

feedback strength on the P-unit response which is modeled as a

dependence of C with the contrast A:

C~C0Gs k(A), ð11Þ

with k(A) being the input/output relationship of the P-units. The

parameter C0 is set to 4:16 for the global stimulus (in order to fit

the mean firing rate measured experimentally at global stimulation

of 2 Hz and 7:5% contrast), and to zero for the local stimulus

(since this type of stimulus does not activate the feedback pathway).

The saturation of the feedback pathway is being taken into

account in the parameter Gs, which will be one for low contrasts

(i.e., 3:25% and 7:5%) and less than one of higher values (we chose

Gs~0:85 for 15% contrast and Gs~0:65 for 30% contrast). When

feedback saturation is not being considered in the model, we just

set Gs~1 for all contrasts. Again, since P-units drive feedback, the

P-unit adaptation at low AM frequencies discussed above will

affect as well the feedback input. Therefore, we follow the same

criterion as with S(t) and we multiply the whole feedback function

by a small factor 1:15 if f w5 Hz to account for P-unit adaptation.

A necessary condition for cancellation is to have a stable phase

relationship for each segment and, hence, each weight. Such a

requirement is fulfilled by considering that there is a particular set

of PFs responsible for the cancellation of a given AM frequency.

This has been corroborated with in vivo electrophysiological

measurements [16], and therefore we assume here that our

feedback pathway is frequency-specific.

As also observed experimentally in [16], cancellation starts to

decay at high AM frequencies, hypothetically due to failures of

granule cells for bursting at least once per cycle under global

stimulation (and thus failing to drive learning properly). In

agreement with these observations, we notice a slightly consistent

decay of cancellation for f ~9 Hz, which can be easily taken into

account by reducing C0 to a value of 3:12 for this frequency, to

improve the fitting of experimental data.

Burst definition and cancellation measurement
Following the definition of a burst that induces plasticity [23],

the spike train of the model SP cell was constantly monitored for

small (2 spikes within 15 ms) and large (4 spikes within 45 ms)

bursts. These particular definitions of burst are only adopted here

to simplify the online computations, as the quantitative behavior of

our model does not depend sensitively on such assumptions, or

even on the presence of strong intrinsic mechanisms for bursting

generation (see Discussion for details).

It is worth mentioning here that spikes in each SP burst must be

independent (i.e. there cannot be a small burst in a large burst, or a

large and a small burst in 5 spikes). Since each PF segment

produces a presynaptic burst arriving at the apical dendrite, there

is one PF burst at every time ts in the model, and thus PF bursts

are spaced 2:5 ms apart. When the SP cell bursts under global

stimulation at time tB, the burst learning rule identified in vitro (Eq.

3) is immediately invoked for all PF segments.

To quantify the level of cancellation of the global stimuli, we

follow [16] and employ the following criterion:

Cancellation(%)~100 1{
ZG

ZL

� �
, ð12Þ

where ZG, ZL are, respectively, the amplitude of SP response

(measured in spikes per second) for global and local stimulation.

More precisely, the PSTH (i.e. firing rate as a function of stimulus

phase) of the SP cell was fitted to a sinusoidal function (plus

baseline level) for the global stimulation case, and the amplitude of

such sinusoidal was taken as ZG . Because of the rectification, the

same fit could not be applied to the local stimulation case, since the

response clearly deviates from a sine wave. The SP response to

local stimulation was then fitted to a Gaussian distribution (plus

baseline level) and the height of such a Gaussian was taken as ZL.

Table 2. Parameters used in the DAP model.

Parameter Value

a 20

b 2.45 ms

c 1.4 ms

m1 0.6

m2 2

m3 0.7 ms

m4 24.5 ms

rs 0.7 ms

tb 7 ms

doi:10.1371/journal.pcbi.1003180.t002
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This criterion was followed for both experimental data and model

predictions.

The degradation measurement is the complementary of the

frequency-averaged cancellation, and it was employed to show, in

a clear manner, how much the cancellation level is degraded when

increasing the stimulus contrast (Fig. 1D). It is defined as

Degradation(%)~ 100{
1

Nf

XNf

i

Cancellationi(%)

0
@

1
A ð13Þ

with Nf ~4 is the number of AM frequencies considered in the

study (which are 2, 3, 7 and 9 Hz) and the sum runs over all these

frequencies.
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