66 research outputs found

    Transformation Pathways of Silica under High Pressure

    Full text link
    Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure

    Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy

    Get PDF
    The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∌10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∌100 ps for 10 nm crystallites

    Structure and Dynamics of Liquid Iron under Earth's Core Conditions

    Full text link
    First-principles molecular dynamics simulations based on density-functional theory and the projector augmented wave (PAW) technique have been used to study the structural and dynamical properties of liquid iron under Earth's core conditions. As evidence for the accuracy of the techniques, we present PAW results for a range of solid-state properties of low- and high-pressure iron, and compare them with experimental values and the results of other first-principles calculations. In the liquid-state simulations, we address particular effort to the study of finite-size effects, Brillouin-zone sampling and other sources of technical error. Results for the radial distribution function, the diffusion coefficient and the shear viscosity are presented for a wide range of thermodynamic states relevant to the Earth's core. Throughout this range, liquid iron is a close-packed simple liquid with a diffusion coefficient and viscosity similar to those of typical simple liquids under ambient conditions.Comment: 13 pages, 8 figure

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    Fe–FeO and Fe–Fe<sub>3</sub>C melting relations at Earth's core–mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    Get PDF
    International audienceEutectic melting temperatures in the Fe–FeO and Fe–Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe–S and Fe–Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core–mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∌5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle

    Structure and density of Fe-C liquid alloys under high pressure

    Get PDF
    International audienceThe density and structure of liquid Fe-C alloys have been measured up to 58 GPa and 3,200 K by in situ X-ray diffraction using a Paris-Edinburgh press and laser-heated diamond anvil cell. Study of the pressure evolution of the local structure inferred by X-ray diffraction measurements is important to understand the compression mechanism of the liquid. Obtained data show that the degree of compression is greater for the first coordination sphere than the second and third coordination spheres. The extrapolation of the measured density suggests that carbon cannot be the only light element alloyed to iron in the Earth's core, as 8-16 at % C (1.8-3.7 wt % C) would be necessary to explain the density deficit of the outer core relative to pure Fe. This concentration is too high to account for outer core velocity. The presence of other light elements (e.g., O, Si, S, and H) is thus required

    Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamondlike BC5BC_5

    No full text
    International audienceThe acknowledgment to L. Dubrovinsky for microprobe analysis was an error. On page 2, the statement that ‘‘The 1:5 boron-to-carbon ratio has been additionally confirmed by electron energy loss spectroscopy (GIF2000, Gatan) and by electron microprobe analysis (Cameca SX-50, Camebax)'' should read ‘‘The 1:5 boron-to-carbon ratio has been additionally confirmed by electron energy loss spectroscopy (GIF2000, Gatan) and by x-ray electron probe microanalysis (S400, Leica/PGT Spirit).'' In the caption of Fig. 1(b), the following remark should be added: ‘‘For clarity, the lines of rhenium from a gasket and lines of sodium chloride separating the sample from diamonds have been subtracted from the diffraction patterns.'' We also take an opportunity to add a missing sentence in the paragraph devoted to the electrical properties of c-BC5 on page 4: ‘‘Recently, diamondlike BC5 has been predicted to be metallic and superconducting with a Tc of 45 K [1].'' None of the results and conclusions in the Letter is affected by this negligence
    • 

    corecore