1,406 research outputs found
Origin of spontaneous electric dipoles in homonuclear niobium clusters
Surprisingly large spontaneous electric dipole moments recently observed in
homonuclear niobium clusters below 100 K (Moro el. al. Science 300, 1265
(2003)) are explained using first-principles electronic structure calculations.
The calculated moments for Nb(n) (n <= 15) closely follow the experimental data
in which large dipole moments are seen for n = 11-14. We establish that the
dipoles are strongly correlated with the geometrical asymmetry of the clusters.
The magnitude of the dipole moment is roughly proportional to the spread in the
principal moments of inertia and its direction tends to align along the axis of
the largest principal moment. Charge deformation densities reveal directional,
partially covalent bonds that enhance the formation of asymmetric geometries.
Classical simulations of the deflection of a cluster in a molecular beam reveal
that the electronic dipole may persist at higher temperatures, but is masked by
the rotational dynamics of the cluster
Entropy production of cyclic population dynamics
Entropy serves as a central observable in equilibrium thermodynamics.
However, many biological and ecological systems operate far from thermal
equilibrium. Here we show that entropy production can characterize the behavior
of such nonequilibrium systems. To this end we calculate the entropy production
for a population model that displays nonequilibrium behavior resulting from
cyclic competition. At a critical point the dynamics exhibits a transition from
large, limit-cycle like oscillations to small, erratic oscillations. We show
that the entropy production peaks very close to the critical point and tends to
zero upon deviating from it. We further provide analytical methods for
computing the entropy production which agree excellently with numerical
simulations.Comment: 4 pages, 3 figures and Supplementary Material. To appear in Phys.
Rev. Lett.
Time resolved fission in metal clusters
We explore from a theoretical point of view pump and probe (P&P) analysis for
fission of metal clusters where probe pulses are generalized to allow for
scanning various frequencies. We show that it is possible to measure the time
the system needs to develop to scission. This is achieved by a proper choice of
both delay and frequency of the probe pulse. A more detailed analysis even
allows to access the various intermediate stages of the fission process.Comment: 4 pages, 4 figure
Radar plots: A novel modality for displaying disparate data on the efficacy of eluxadoline for the treatment of irritable bowel syndrome with diarrhea
BackgroundPatients with irritable bowel syndrome with diarrhea (IBSâD) experience a range of abdominal and bowel symptoms; successful management requires alleviation of this constellation of symptoms. Eluxadoline, a locally active mixed ÎŒâ and Îșâopioid receptor agonist and ÎŽâopioid receptor antagonist, is approved for the treatment of IBSâD in adults based on the results of 2 Phase 3 studies. Radar plots can facilitate comprehensive, visual evaluation of diverse but interrelated efficacy endpoints.MethodsTwo doubleâblind, placeboâcontrolled, Phase 3 trials (IBSâ3001 and IBSâ3002) randomized patients meeting Rome III criteria for IBSâD to twiceâdaily eluxadoline 75 or 100 mg or placebo. Radar plots were prepared showing pooled Weeks 1â26 response rates for the primary efficacy composite endpoint (simultaneous improvement in abdominal pain and stool consistency), stool consistency, abdominal pain, urgencyâfree days, and adequate relief, and change from baseline to Week 26 in IBSâD global symptom score, abdominal discomfort, abdominal pain, abdominal bloating, and daily number of bowel movements.Key ResultsThe studies enrolled 2428 patients. Eluxadoline increased Weeks 1â26 responder proportions vs placebo for the composite endpoint, stool consistency, abdominal pain, urgencyâfree days, and adequate relief. Changes from baseline to Week 26 in IBSâD global symptom score, abdominal discomfort, abdominal pain, abdominal bloating, and number of bowel movements were greater with eluxadoline vs placebo.Conclusions and InferencesData presentation in radar plot format facilitates interpretation across multiple domains, demonstrating that eluxadoline treatment led to improvements vs placebo across 13 endpoints representing the range of symptoms experienced by patients with IBSâD.Data presentation in radar plot format can facilitate evaluation of the diverse array of symptoms and outcomes that are relevant to a symptomâbased condition like irritable bowel syndrome with diarrhea (IBSâD). In 2 Phase 3 trials, eluxadoline treatment improved stool consistency and frequency, abdominal pain, bloating and discomfort, feelings of urgency, global symptom score, and adequate relief. Radar plots provide a visual demonstration of improvements with eluxadoline across 13 endpoints encompassing the diverse constellation of symptoms experienced by patients with IBSâD.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145265/1/nmo13331_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145265/2/nmo13331.pd
Galaxy And Mass Assembly (GAMA): trends in galaxy colours, morphology, and stellar populations with large-scale structure, group, and pair environments
We explore trends in galaxy properties with Mpc-scale structures using catalogues of environment and large scale structure from the Galaxy And Mass Assembly (GAMA) survey. Existing GAMA catalogues of large scale structure, group and pair membership allow us to construct galaxy stellar mass functions for different environmental types. To avoid simply extracting the known underlying correlations between galaxy properties and stellar mass, we create a mass matched sample of galaxies with stellar masses between 9.5â€logMâ/hâ2Mââ€11 for each environmental population. Using these samples, we show that mass normalised galaxies in different large scale environments have similar energy outputs, uâr colours, luminosities, and morphologies. Extending our analysis to group and pair environments, we show galaxies that are not in groups or pairs exhibit similar characteristics to each other regardless of broader environment. For our mass controlled sample, we fail to see a strong dependence of S\'{e}rsic index or galaxy luminosity on halo mass, but do find that it correlates very strongly with colour. Repeating our analysis for galaxies that have not been mass controlled introduces and amplifies trends in the properties of galaxies in pairs, groups, and large scale structure, indicating that stellar mass is the most important predictor of the galaxy properties we examine, as opposed to environmental classifications
Correlated ab-initio calculations for ground-state properties of II-VI semiconductors
Correlated ab-initio ground-state calculations, using relativistic
energy-consistent pseudopotentials, are performed for six II-VI semiconductors.
Valence () correlations are evaluated using the coupled cluster approach
with single and double excitations. An incremental scheme is applied based on
correlation contributions of localized bond orbitals and of pairs and triples
of such bonds. In view of the high polarity of the bonds in II-VI compounds, we
examine both, ionic and covalent embedding schemes for the calculation of
individual bond increments. Also, a partitioning of the correlation energy
according to local ionic increments is tested. Core-valence ()
correlation effects are taken into account via a core-polarization potential.
Combining the results at the correlated level with corresponding Hartree-Fock
data we recover about 94% of the experimental cohesive energies; lattice
constants are accurate to \sim 1%; bulk moduli are on average 10% too large
compared with experiment.Comment: 10 pages, twocolumn, RevTex, 3 figures, accepted Phys. Rev.
Measurement of the conductance of a hydrogen molecule
Recent years have shown steady progress in research towards molecular
electronics [1,2], where molecules have been investigated as switches [3-5],
diodes [6], and electronic mixers [7]. In much of the previous work a Scanning
Tunnelling Microscope was employed to address an individual molecule. As this
arrangement does not provide long-term stability, more recently
metal-molecule-metal links have been made using break junction devices [8-10].
However, it has been difficult to establish unambiguously that a single
molecule forms the contact [11]. Here, we show that a single H2 molecule can
form a stable bridge between Pt electrodes. In contrast to results for other
organic molecules, the bridge has a nearly perfect conductance of one quantum
unit, carried by a single channel. The H2-bridge provides a simple test system
and a fundamental step towards understanding transport properties of
single-molecule devices.Comment: 6 pages, 4 figure
The bulk of the black hole growth since z ~ 1 occurs in a secular universe: no major merger-AGN connection
What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs)
activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and
a matched control sample of 1264 inactive galaxies over z ~ 0.3â1.0 and M_â < 10^(11.7) M_â with high-resolution
Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of
their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies
in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be
responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies
do not show strong distortions and (2) there is no significant difference in the distortion fractions between active
and inactive galaxies. Our findings provide the best direct evidence that, since z ~ 1, the bulk of black hole (BH)
accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e.,
internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth.We
also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability
of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement
of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major
mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of
a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low
levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions
Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 m to 1 mm
We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 Ă 105 (Mpcâhâ1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5âper cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 ÎŒm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) Ă 1035âh W Mpcâ3 of which (1.2 ± 0.1) Ă 1035âh W Mpcâ3 is directly released into the inter-galactic medium and (0.6 ± 0.1) Ă 1035âh W Mpcâ3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 ÎŒm to 0.6âmm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology
Gaia Data Release 3: Analysis of the Gaia BP/RP spectra using the General Stellar Parameterizer from Photometry
[Abstract]: Context. The astrophysical characterisation of sources is among the major new data products in the third Gaia Data Release (DR3). In particular, there are stellar parameters for 471 million sources estimated from low-resolution BP/RP spectra. Aims. We present the General Stellar Parameterizer from Photometry (GSP-Phot), which is part of the astrophysical parameters inference system (Apsis). GSP-Phot is designed to produce a homogeneous catalogue of parameters for hundreds of millions of single non-variable stars based on their astrometry, photometry, and low-resolution BP/RP spectra. These parameters are effective temperature, surface gravity, metallicity, absolute MG magnitude, radius, distance, and extinction for each star. Methods. GSP-Phot uses a Bayesian forward-modelling approach to simultaneously fit the BP/RP spectrum, parallax, and apparent G magnitude. A major design feature of GSP-Phot is the use of the apparent flux levels of BP/RP spectra to derive, in combination with isochrone models, tight observational constraints on radii and distances. We carefully validate the uncertainty estimates by exploiting repeat Gaia observations of the same source. Results. The data release includes GSP-Phot results for 471 million sources with G 20), mostly within 2 kpc. Metallicity estimates exhibit substantial biases compared to literature values and are only useful at a qualitative level. However, we provide an empirical calibration of our metallicity estimates that largely removes these biases. Extinctions A0 and ABP show typical differences from reference values of 0.070.09 mag. MCMC samples of the parameters are also available for 95% of the sources. Conclusions. GSP-Phot provides a homogeneous catalogue of stellar parameters, distances, and extinctions that can be used for various purposes, such as sample selections (OB stars, red giants, solar analogues etc.). In the context of asteroseismology or ground-based interferometry, where targets are usually bright and have good parallax measurements, GSP-Phot results should be particularly useful for combined analysis or target selection.We thank our DPAC colleagues from CU5, Paolo Montegriffo, Dafydd Wyn Evans, Michael Weiler, Carme Jordi, Elena Pancino and Carla Cacciari, who have continuously supported us with their expertise on BP/RP spectra, their instrument characteristics and calibration. We also thank our DPAC colleagues from CU9, Carine Babusiaux, MercĂš Romero-GĂłmez and Francesca Figueras, for their validation work and valuable feedback. Last but not least, we thank our former colleagues Tri Astraadmadja, Dae-Won Kim, Kester Smith, Paravskevi Tsalmantza, Rainer Klement, and Carola Tiede. This research was achieved using the POLLUX database (http://pollux.oreme.org) operated at LUPM (UniversitĂ© Montpellier â CNRS, France with the support of the PNPS and INSU).
This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia.
The Gaia mission and data processing have financially been supported by, in alphabetical order by country:
the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory;
the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737;
the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement dâExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences - Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy â PARADISE);
the Brazil-France exchange programmes Fundação de Amparo Ă Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂvel Superior (CAPES) - ComitĂ© Français dâEvaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB);
the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂfico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin);
the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100;
the Tenure Track Pilot Programme of the Croatian Science Foundation and the Ăcole Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 âMining the Variable Skyâ, with the funds of the Croatian-Swiss Research Programme;
the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058;
the Danish Ministry of Science;
the Estonian Ministry of Education and Research through grant IUT40-1;
the European Commissionâs Sixth Framework Programme through the European Leadership in Space Astrometry (https://www.cosmos.esa.int/web/gaia/elsa-rtn-programme) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commissionâs Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (https://gaia.ub.edu/twiki/do/view/GENIUS/) and through grant 264895 for the Gaia Research for European Astronomy Training (https://www.cosmos.esa.int/web/gaia/great-programme) network;
the European Cooperation in Science and Technology (COST) through COST Action CA18104 âRevealing the Milky Way with Gaia (MW-Gaia)â;
the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Unionâs Horizon 2020 research and innovation and excellent science programmes through Marie SkĆodowska-Curie grant 745617 (Our Galaxy at full HD â Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids â CepBin), 716155 (Structured ACCREtion Disks â SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys â UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences â EXPLORE);
the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (https://www.cosmos.esa.int/web/gaia/great-programme);
the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement dâExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia;
the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation;
the French Centre National dâĂtudes Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the âInvestissements dâavenirâ programme, through grant ANR-15-CE31-0007 for project âModelling the Milky Way in the Gaia eraâ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project âThe Milky Way disc formation in the Gaia eraâ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project âUnlocking the potential of Cepheids as primary distance calibratorsâ (UnlockCepheids), through grant ANR-19-CE31-0017 for project âSecular evolution of galxiesâ (SEGAL), and through grant ANR-18-CE31-0006 for project âGalactic Dark Matterâ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de lâUnivers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the âAction FĂ©dĂ©ratrice Gaiaâ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES;
the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time;
the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (âSeismoLabâ);
the Science Foundation Ireland (SFI) through a Royal Society - SFI University Research Fellowship (M. Fraser);
the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant;
the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dellâIstruzione, dellâUniversitĂ e della Ricerca) through the Premiale project âMIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmologyâ (MITiC);
the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA);
the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12;
the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂsica e Gravitação (CENTRA);
the Slovenian Research Agency through grant P1-0188;
the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (âComputaciĂłn de Altas Prestaciones VIIâ), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund âA way of making Europeâ) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia âMarĂa de Maeztuâ) through grant CEX2019-000918-M, the University of Barcelonaâs official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂas de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund â Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre - Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament dâInnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project âModels de ProgramaciĂł i Entorns dâExecuciĂł Parallelsâ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (âInvesting in your futureâ);
the Swedish National Space Agency (SNSA/Rymdstyrelsen);
the Swiss State Secretariat for Education, Research, and Innovation through the Swiss Activités Nationales Complémentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson);
the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1.
The GBOT programme uses observations collected at (i) the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) with the VLT Survey Telescope (VST), under ESO programmes 092.B-0165, 093.B-0236, 094.B-0181, 095.B-0046, 096.B-0162, 097.B-0304, 098.B-0030, 099.B-0034, 0100.B-0131, 0101.B-0156, 0102.B-0174, and 0103.B-0165; and (ii) the Liverpool Telescope, which is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofĂsica de Canarias with financial support from the United Kingdom Science and Technology Facilities Council, and (iii) telescopes of the Las Cumbres Observatory Global Telescope Network.Xunta de Galicia; ED431B-2021/36Xunta de Galicia; ED481A-2019/155Xunta de Galicia; ED481A-2021/296Xunta de Galicia; ED431G-2019/0
- âŠ