509 research outputs found

    Topological Dirac states in asymmetric Pb1-xSnxTe quantum wells

    Get PDF
    The electronic structure of lead-salt (IV-VI semiconductor) topological quantum wells (T-QWs) is investigated with analytical solutions of the effective 4x4 Dimmock k & BULL; p model, which gives an accurate description of the bands around the fundamental energy gap. Specific results for three-layer Pb1-xSnxTe nanostructures with varying Sn composition are presented and the main differences between topological and normal (N) QWs highlighted. A series of new features are found in the spectrum of T-QWs, in particular in asymmetric QWs where large (Rashba spin-orbit) splittings are obtained for the topological Dirac states inside the gap

    Zero-field spin splitting in InAs-AlSb quantum wells revisited

    Full text link
    We present magnetotransport experiments on high-quality InAs-AlSb quantum wells that show a perfectly clean single-period Shubnikov-de Haas oscillation down to very low magnetic fields. In contrast to theoretical expectations based on an asymmetry induced zero-field spin splitting, no beating effect is observed. The carrier density has been changed by the persistent photo conductivity effect as well as via the application of hydrostatic pressure in order to influence the electric field at the interface of the electron gas. Still no indication of spin splitting at zero magnetic field was observed in spite of highly resolved Shubnikov- de Haas oscillations up to filling factors of 200. This surprising and unexpected result is discussed in view of other recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Higher order contributions to Rashba and Dresselhaus effects

    Full text link
    We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to an arbitrary order in the wavevector k. This is achieved by using the double group representations to construct general symmetry-allowed Hamiltonians with full spin-orbit effects within the tight-binding formalism. We have computed full-zone spin Hamiltonians for [001]-, [110]- and [111]-grown zinc blende heterostructures (D_{2d},C_{4v},C_{2v},C_{3v} point group symmetries), which are commonly used in spintronics. After an expansion of the Hamiltonian up to third order in k, we are able to obtain additional terms not found previously. The present method also provides the matrix elements for bulk zinc blendes (T_d) in the anion/cation and effective bond orbital model (EBOM) basis sets with full spin-orbit effects.Comment: v1: 11 pages, 3 figures, 8 table

    Quantum dots based on spin properties of semiconductor heterostructures

    Get PDF
    The possibility of a novel type of semiconductor quantum dots obtained by spatially modulating the spin-orbit coupling intensity in III-V heterostructures is discussed. Using the effective mass model we predict confined one-electron states having peculiar spin properties. Furthermore, from mean field calculations (local-spin-density and Hartree-Fock) we find that even two electrons could form a bound state in these dots.Comment: 9 pages, 3 figures. Accepted in PRB (Brief Report) (2004

    Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry

    Full text link
    In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called D'yakonov-Perel' decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.Comment: 8 pages, 6 figure

    Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem

    Full text link
    Theory of electrical spin injection from a ferromagnetic (FM) metal into a normal (N) conductor is presented. We show that tunnel contacts (T) can dramatically increase spin injection and solve the problem of the mismatch in the conductivities of a FM metal and a semiconductor microstructure. We also present explicit expressions for the spin-valve resistance of FM-T-N- and FM-T-N-T-FM-junctions with tunnel contacts at the interfaces and show that the resistance includes both positive and negative contributions (Kapitza resistance and injection conductivity, respectively).Comment: 4 pages, to appear in Phys. Rev. B (rapid communications

    Electron and Hole Spin Splitting and Photogalvanic Effect in Quantum Wells

    Full text link
    A theory of the circular photogalvanic effect caused by spin splitting in quantum wells is developed. Direct interband transitions between the hole and electron size-quantized subbands are considered. It is shown that the photocurrent value and direction depend strongly on the form of the spin-orbit interaction. The currents induced by structure-, bulk-, and interface-inversion asymmetry are investigated. The photocurrent excitation spectra caused by spin splittings in both conduction and valence bands are calculated.Comment: 7 pages, 3 figure

    Anisotropic transport in the two-dimensional electron gas in the presence of spin-orbit coupling

    Full text link
    In a two-dimensional electron gas as realized by a semiconductor quantum well, the presence of spin-orbit coupling of both the Rashba and Dresselhaus type leads to anisotropic dispersion relations and Fermi contours. We study the effect of this anisotropy on the electrical conductivity in the presence of fixed impurity scatterers. The conductivity also shows in general an anisotropy which can be tuned by varying the Rashba coefficient. This effect provides a method of detecting and investigating spin-orbit coupling by measuring spin-unpolarized electrical currents in the diffusive regime. Our approach is based on an exact solution of the two-dimensional Boltzmann equation and provides also a natural framework for investigating other transport effects including the anomalous Hall effect.Comment: 10 pages, 1 figure included. Discussion of experimental impact enlarged; error in calculation of conductivity contribution corrected (cf. Eq. (A14)), no changes in qualitative results and physical consequence

    Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction

    Full text link
    We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechanical Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR
    • …
    corecore