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ABSTRACT

The electronic structure of lead-salt (IV-VI semiconductor) topological quantum wells (T-QWs) is
investigated with analytical solutions of the effective 4x4 Dimmock k ⋅ p model, which gives an
accurate description of the bands around the fundamental energy gap. Specific results for three-layer
Pb1−xSnxT e nanostructures with varying Sn composition are presented and the main differences
between topological and normal (N) QWs highlighted. A series of new features are found in the
spectrum of T-QWs, in particular in asymmetric QWs where large (Rashba spin-orbit) splittings are
obtained for the topological Dirac states inside the gap.

As in a normal GaAs∕AlGaAs quantum well (N-QW)
carriers in topological quantum wells (T-QWs) are confined
in a semiconducting nanolayer sandwiched by larger band-
gap barrier materials. The difference is that in T-QWs the
barriers or wells have inverted-gaps and the interfaces are
between normal and topological insulators (TIs). The align-
ment of the bulk conduction and valence band edges in
T and N-QWs are illustrated in Figure 1; there are also
hybrid (H) QWs with one normal and one inverted-gap
interface. N-QWs are at the basis of a whole chapter of both
condensed matter physics and electronic device technology.
It is likely that T-QWs will have a large impact too. However
the features of this new class of semiconductor QWs that
can be used in device applications [1, 2] are not yet fully
understood.

The spin polarized electronic structure of symmetric and
asymmetric IV-VI T-QWs is here studied with a realistic
4-band k ⋅ p model for the bulk and envelope-function
approximation. The analytical and quantitative results ob-
tained highlight the new features of T-QWs, extend previous
theories and can be readily used for sample characterization
and further studies of their electronic properties including
the interface-bound metallic states which in 2D TIs as well
as in the quantum Hall effect (QHE) are dissipation-less.

Historically in the 1980s, within newborn band-gap en-
gineering, the spin-polarized states bound to inverted-gap
interfaces (or surfaces) and laying inside the gap, were
soon recognized in the envelope-function solutions for II-VI
HgCdT e [3, 4, 5, 6] , IV-VI PbSnT e [7, 8, 6, 9] and III-
V [10] narrow (or zero) gap semiconductor heterojunctions,
surfaces and QWs, much like effective-mass domain walls.
With high mobility III-V N-QWs, in the same period the
QHE was discovered [11] and explained with the introduc-
tion of topological concepts [12]. Decades later the existence
of TIs was understood [13, 14] and the interest in inverted-
gap interfaces renewed. The low-energy states bound to such
interfaces are now known to be robust (protected topologi-
cally) and 2D TIs have been realized in II-VI HgTe/CdTe
[15, 16] and III-V InAs/GaSb [17] QWs in which a band
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Figure 1: Conduction and valence bulk band edge alignment
in topological (T), normal (N) and hybrid (H) semiconductor
quantum wells.

crossing and corresponding topological to normal insulator
(T-N) transition takes place as a function of the well width
L. In parallel, completing the picture and motivated by
the proposal of a spin-transistor [18], the physics of the
Rashba (i.e. mesoscopic) spin-orbit (SO) interaction was
developed [19, 20, 21, 22, 23]. The fundamental role of the
SO interaction in the TI physics is well known, however,
e.g., the Rashba splitting of the topological Dirac states in
asymmetric T-QWs is not known yet.

Today the lead-salts, including in their family topo-
logical crystalline insulators (TCIs) [24] such as Sn rich
PbSnT e [25], form preferable topological structures in
many respects [26, 27, 28, 29, 30, 31, 32]. With IV-VI
2D nanostructures [33] it is possible to fabricate simple T-
QWs and study T-N transitions by varying composition,
temperature or pressure. For example, at low temperatures
by varying the Sn content x, the gap of Pb1−xSnxT e inverts
at x ≃ 0.4 and the above three basic types of semiconductor
QWs (T,N and H) can be easily grown with Pb1−xSnxT e
three layer nanostructures with say x in the center (well),
and x1 and x2 (≠ x) in the left and right layers (barriers)
respectively. For instance, if x ≲ 0.4 (i.e. on the PbT e
side of the gap-inversion) large x1 and x2 (i.e. Sn rich)
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barriers give T-QWs, while Pb rich barriers give N-QWs,
and vice-versa if x ≳ 0.4. In both cases, a Pb rich barrier
on one side and a Sn rich on the other form H-QWs. Lead-
salts are multi-valley semiconductors with four equivalent
anisotropic valleys at the L-points of the Brillouin zone; and
in a QWeach non-equivalent valley leads to a different series
of quantized states; the valleys (their main axis) will be either
longitudinal or oblique (making an angle �) to the growth
direction. In [111] grown QWs one has one longitudinal and
three oblique valleys, while in [100] grown QWs all four
valleys are oblique.

It is known that in single inverted-gap interfaces (or in
thick T-QWs, i.e with independent interfaces) exist inside
the gap perfect Dirac cones of allowed states that are topo-
logical, spin-polarized, bound to the interface and metallic
[7, 8, 6, 9]. As the well width of the thick T-QW is reduced,
the states bound to the different interfaces start to interact
and a gap is opened at the center of the cone [8, 26]. If the
T-QW is symmetric, the states with opposite spins bound
to opposite interfaces have the same energy and the spectra
remains spin degenerate. Among the open questions there
are: how the spin degeneracy is broken in asymmetric T-
QWs (Rashba effect), including the resulting spin-texture;
at what rate the gap of the Dirac cone increases with further
decrease of L; how these effects vary between ground and
excited states; and what is their quantitative dependence on
valley type, growth direction and structure’s parameters (i.e.
bulk ones plus the band-offset) in realistic PbSnT e T-QWs.

These questions are addressed here with (k-linear) Dim-
mock [34] 4-band k ⋅ p model which gives a very good
description of the bulk electronic states around the funda-
mental gap (Eg) using as parameters the measured Eg and
band-edge longitudinal and transverse effective masses m∗l
and m∗t . The corresponding effective Hamiltonian for QW
envelope-functions is solved analyticaly for the quantized
energies from each non-equivalent valley in symmetric and
asymmetric T, N and H-QWs, grown along the main crystal-
lographic directions, i.e. [111] (valley main axis) and [100]
(preferable cleavage). We note that in analogy with Dirac’s
equation, Dimmock’s model can be projected into one of the
bands (conduction or valence) and be written as a 2x2 k2
(Schroedinger-like) effective Hamiltonian with explicit SO
(Rashba) term [35, 36, 37, 38, 39]. The resulting Rashba
coupling constant in this case is inversely proportional toEg
in contrast to the well known one for electrons in III-V QWs
which is proportional (in first order) to the SO splitting in the
valence band [23]. The 4x4 and 2x2 effective Hamiltonians
are equivalent and give identical results; however, for the
low-energy states inside the gap the use of the 4x4 effective
Hamiltonian is clearly a more natural choice.

The Dimmock 4x4 effective Hamiltonianand is conve-
niently written as:

H =
(

Δ(z) + q(z) Ô
Ô −Δ(z) + q(z)

)

(1)

with

Ô = Plk̂z′�z′ + Pt(k̂y′�y′ + kx�x) , (2)

where the diagonal elements are implicitly multiplied by
I2x2, ẑ is parallel to the growth direction, Δ(z) = Eg(z)∕2
and q(z), the band(gap-center)-offset, being step functions,
with steps at the interfaces; ẑ′ the valley main-axis direction;
Pl the longitudinal and Pt the transverse (to ẑ′) momentum
matrix elements, determined by P 2l,t = ℏ

2Eg∕2m∗l,t, and with
the ratio r = Pt∕Pl as a measure of the valley anisotropy; x̂
(= x̂′) is parallel to the interfaces, perpendicular to both ẑ
and ẑ′, and kx a good quantum number. The valley (primed)
and the structure (unprimed) coordinate systems are con-
nected by a �-rotation around x̂, so that z′ = cos(�)z +
sin(�)y, and y′ = −sin(�)z+cos(�)y (see Fig. 2 right panel).
Finally the �s are the Pauli spin matrices and k̂� = −i dd� ,
� = z′, y′.

This model has been used to calculate the electronic
structure of different IV-VI nanostructures [40, 35, 41, 36,
37, 26, 38, 31], including topological superlattices [31] and
quantum walls [26], in good agreement with the available
experimental data. However, the studies of topological struc-
tures so far have concentrated mostly on the properties of
the ground-state and longitudinal valley. Here we consider
the general solution for the whole spectrum and investigate
the electronic structure of all different types (N,T and H) of
IV-VI QWs.

Following Ref. [8] it is convenient to begin with the spin-
diagonalization of the Hamiltonian, i.e. to write

H =
(

H+ 0
0 H−

)

by using as base states the eigen-states of �⃗0 satisfying

[

H,
(

�⃗0 0
0 −�⃗0

)

]

= 0 ; (3)

which corresponds to �⃗0Ô = −Ô�⃗0, and leads to

�⃗0 =
(

�x �y �z
)

⎛

⎜

⎜

⎝

−ky
(cos(�)2 + rsin(�)2)kx
(r − 1)cos(�)sin(�)kx

⎞

⎟

⎟

⎠

. (4)

This gives the spin-texture or momentum-spin locking
illustrated in Figure 2 for both longitudinal and oblique
valleys, where �⃗0 is shown as a function of the in-plane
wave-vector. For the longitudinal (� = 0) valley as well as
for spherical (r = 1) valleys, it is reduced to the well known
(−ky, kx, 0) helical and isotropic Rashba spin-texture. For
oblique valleys with r ≠ 1 the spin-texture is seen to
be anisotropic with a non-zero out-of-the-plane (z) spin-
component. Note that �⃗0 gives the direction of the (SO split-
ting) effective magnetic-field [22, 36, 37] and is independent
of Δ(z) and of q(z).

Next one then calculates the matrix elements ofH±. For
the longitudinal valley the structure and valley coordinate
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Figure 2: (color online) (Left) Spin-texture (or polarization) of
the QW states derived from the longitudinal (top) and oblique
(bottom) valleys, as a function of the in-plane wave-vector;
(Right) Structure (unprimed) and valley (primed) coordinate
systems.

systems coincide, there is rotation symmetry around ẑ and
the calculation is much simplified leading to:

H± = H(±k) =
(

Δ + q Plk̂z ∓ iPtk
Plk̂z ± iPtk −Δ + q

)

. (5)

where k =
√

k2x + k2y. For the oblique valleys one has
to consider the coordinate transformation and resulting in-
plane anisotropy. The calculation is much less straitforward,
the expressions more complicated and we here discuss only
the main results. In both cases though, the final solution for
the QW states is then simply obtained by matching the bulk
envelope-functions at each interface.

Recall that in the bulk Δ = Eg∕2 is constant, q = 0,
the Hamiltonian has both space-inversion and electron-hole
symmetries, and the specular symmetric spin-degenerate
conduction and valence bands have the following relativistic
dispersion relation

Ec =
√

Δ2 + (Plkz)2 + (Ptk)2 and Ev = −Ec , (6)

and plane-wave envelope-functions of the form

 kx,ky,kz (z, r⃗∥) = e
i(kxx+kyy+kzz)�±; �± =

(

Δ+E
Plkz±iPtk

1

)

,

(7)

where ± is for the spin up and down, which are degenerate;
for convenience the spin quantization direction is chosen
along �0.

In heterostructures Δ varies along the growth direction
(ẑ), Pl and Pt are assumed constants, the in-plane wave

vector is conserved and the allowed energies are determined
by the continuity of the envelope function at every interface,
which assure continuity of the particle flux. For example, at
an inverted-gap [111] interface at z = 0 (i.e withΔ = Δ0 for
z < 0 and −Δ0 for z > 0) in-gap evanescent waves e�z on
the left and e−�z on the right (×ei(kxx+kyy)), where

� = 1
Pl

√

Δ20 + (Ptk)
2 − E2 ,

can be matched and spin-polarized interface-bound states
with E = ±Ptk are seen to be allowed (for the longitudinal
valley and q = 0) forming the mentioned Dirac cone (of
massless fermions). The result for a general [111] inverted-
gap interface between materials 1 and 2 reads:

E± =
Δ1q

Δ1 + Δ2
± Ptk

√

1 − (
q

Δ1 + Δ2
)2 , (8)

where the origin of energy is set at the center of the gap on
the left and the band-offset q gives the center of the gap on
the right, and is seen to shift the energy position and slope
of the cone.

For QWs, with just a little more algebra the allowed
states are found from the continuity condition at both inter-
faces, e.g. e+�1z� (1)± (z) = (Ae+�z +Be−�z)�± at z = −L∕2,
and (Ce+�z +De−�z)�± = e−�2z�

(2)
± at z = L∕2, for a QW

centred at z = 0 with barrier materials 1 and 2 on the left
and right, where

�i =
1
Pl

√

Δ2i + (Ptk)2 − (E − qi)2 ; (9)

for the regular QW states (above the gap) � → ikz. Recall
that for IV-VI nanostructures the neglect of band bendings
(i.e. the use of flat bands) is a particularly good approxima-
tion in view of their large dielectric constants. As usual the
QW solutions are not explicit as in the single interface case
but obtained via a transcendental equation. For symmetrical
T-QWs with material 1 on both sides the allowed quantized
states are the solutions of:

[ΔΔ1 + (E − q1)E − P 2t k
2]tanℎ(�L) = P 2l ��1 , (10)

equation which for q1 = 0 reduces to the one obtained by
Korenman and Drew (Ref. [8] Eq. (5)). For N-QWs one
simply changes the sign of Δ, and for H-QWs (with q1 = 0)
one obtains:

e2�L[Δ2+Δ21+2(P
2
t k

2+P 2l ��1−E
2)] = Δ21−Δ

2 . (11)

Figure 3 shows specific results for the longitudinal valley
electron states as a function of the well width of all kinds of
Pb0.7Sn0.3T e [111] QWs at low temperatures with Ewg (=
2Δ) = 40 meV , and Pb1−x1Snx1T e barriers with Ebg(=
2Δ1) = 190 meV , corresponding to x1 = 0 (i.e. pure PbT e)
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Figure 3: (color online) Quantized energy levels of Topologi-
cal Pb0.2Sn0.8T e∕Pb0.7Sn0.3T e∕Pb0.2Sn0.8T e (black continuous
lines), Normal PbT e∕Pb0.7Sn0.3T e∕PbT e (blue dashed lines)
and Hybrid PbT e∕Pb0.7Sn0.3T e∕Pb0.2Sn0.8T e (green dotted
lines) symmetric QWs, all with Eb

g = 190 and Ew
g = 40 meV .

The bulk band edge (or gap) is signed with the thin (red)
line and for the hole states note that the spectrum is specular
with respect to E = 0 (mid-gap) due to the e-h symmetry.
The parameters used are the low-temperature PbT e effective
mass m∗l = 0.24me and m∗t = 0.024me and Pb1−xSnxT e gap
Eg(x) = 0.19 − 0.48 x eV .
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Figure 4: (color online) Spin-split electron and hole subbands
in asymmetric Pb0.2Sn0.8T e∕Pb0.7Sn0.3T e∕SnT e T-QW, with
L = 20 nm and a band-offset q = 20 meV .

in the case of N-QWs and x1 = 0.8 in that of T-QWs. The
states for holes are obtained with a specular reflection at
E = 0 and it is assumed q1 = 0. As expected, due to the
confinement, the subband-edge energies (i.e., for k = 0)
shown increase with decreasing L in all three types. The
main difference is that T and H QWs allow for states inside
the gap (i.e. with E < 20 meV ). For T-QWs these states
are spin degenerate and the observed energy increase for
decreasing L corresponds to the gap openning at the Dirac
cone center, and is due to hybridization between the states
bound to opposed interfaces. For H-QWs on the other hand
these interface states are spin-polarized, pinned to zero and
bound to the inverted-gap one. It is also interesting to note
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Figure 5: Electron subbands spin-splitting of the L = 20 nm
T-QW of Figure 4, as a function of the parallel wave-vector k.
The inset shows the dependence on band off-set q for a fixed
k (= 0.02 nm−1).
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Figure 6: Spin-splittings of the subbands at k = 0.02 nm−1 for
PbSnT e T-QWs (as in Figure 4) with varying well width L. In
the inset, the corresponding results for N-QWs.

that at higher energies the spectra of T and N-QWs tend to
be similar as the nature of the gap in the well (i.e. if inverted
or not) gets less important, and that the levels of the H-QWs
lay right in between those of the N-QWs (or T-QWs).

The differences though are bigger and more interest-
ing for spintronics applications in the case of asymmetric
QWs. As in the better known (III-V) Rashba effect, the SO
splitting of the electron and hole subbands in IV-VI T-QWs
requires structure inversion asymmetry (SIA). However, in
their case due to electron-hole symmetry, Δ(z) ≠ Δ(−z) is
not sufficient; q ≠ 0 in at least one of the two interfaces
to break the e-h symmetry is necessary. As an example, in
Figure 4 it is shown the obtained dispersion relations for
the (isotropic longitudinal) electron and hole subbands of
a Pb0.2Sn0.8T e∕Pb0.7Sn0.3T e∕SnT e asymmetric T-QW,
with L = 20 nm . The band-offset between Pb1−xSnxT e
and SnT e is not well known and in the figure a q2 = 20
meV is used (q1 = 0). Continuous and dashed lines give
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Figure 7: Comparison between the interfaces states deriving
from longitudinal and oblique valleys, the last one both for
[100] and [111] PbSnT e T-QWs (Eb

g = 190 and Ew
g = 40

meV ).

the Rashba SO split dispersion relations for both electron
and hole subbands, obtained as the solutions of the following
equation which generalizes Eq.(10) to the asymmetric QW
case:

{

(Δ + E)P 2l �1�2 − P
2
t k

2(Δ′1 + Δ
′
2 + Δ − E) − E

3

+E2(Δ′1 + Δ
′
2 + Δ) − EΔ(Δ

′
1 + Δ

′
2) + (Δ − E)Δ

′
1Δ

′
2

±PlPtk
[

(Δ′1 + Δ)�2 − (Δ
′
2 + Δ)�1

]

}

tanℎ(�L)

= P 2l
[

(Δ′1 − E)��2 + (Δ
′
2 − E)��1

]

∓ PlPt�k(Δ′1 − Δ
′
2), (12)

whereΔ′i = Δi+qi, i = 1, 2. The spin-splitting as a function
of the parallel wave-vector k and its dependence on the band-
offset q are plotted in Figure 5 for both interface-bound and
above the gap (regular) QW subbands, where it is noted
that while for the regular subbands the splitting increases as
expected linearly with k (with a slowly decreasing slope),
that for the interface-bound states instead, besides being
one order of magnitude larger, is seen to initialy increase
very fast with k and then to present a maximum. For a
fixed k (= 0.02 nm−1) the inset shows the splitting sign
change and linear variation with q. Figure 6 compares the
well-width dependence of the splitting in T and similar N-
QWs (inset), and shows different behaviours in particular
conserning the T-QW interface bound states which are seen
to present decreasing spin-splittings with decreasing L. It
is known that such SO splitting is determined both by the
amplitudes of the envelope-functions at the interfaces and
by the energy dependent coupling parameter; such increase
with L for the in-gap states for instance derives from the
increasing coupling with the decreasing gap (in the Dirac
cone).

The El,n series of quantized states derived from the
longitudinal valley in T-QWs discussed so far give the
simplest example of the T-QW new features and the ground
state of [111] QWs. To complete the spectra of the [111]
QW and to calculate that for [100] QWs, we now discuss
the results for the oblique valleys which mainly introduce
in-plane anisotropy in the dispersion relations. For exam-
ple in a single inverted-gap interface (or thick T-QW) the

Figure 8: (color online) Anisotropic and gapped Dirac cone of
interface states from the oblique valleys in a [111] (L = 60 nm)
T-QWs.

-0.05 0.00 0.05
-20

-10

0

10

20

ky(nm
-1)

E
(m
eV

)

-0.05 0.00 0.05
-20

-10

0

10

20

kx(nm
-1)

L= 30 nm

     60 

    120 

Figure 9: Dispersion relation for the spin split interface-bound
states derived from the oblique valleys in [111] asymmetric
T-QWs with L = 120, 60 and 30 nm, and q1 = 0, q2 = 20 meV ,
Δ1 = 95,Δ2 = 95 meV , for wave-vectors along x̂ and ŷ.

dispersion relation of the (interface-bound) allowed states
from the oblique valleys satisfy the same Eq.(8) above with
k substituted by

√

k2x + (
9

1+8r2 )k
2
y for [111] QWs and by

√

k2x + (
3

1+2r2 )k
2
y for [100] QWs, describing elliptical Dirac

cones.
The subbands derived from the oblique valleys in [111]

T-QWs are higher in energy but with similar properties as
the longitudinal ones. Figure 7 gives specific results for
the oblique-valley subband edge dependence on L and on
the growth direction, compared with the [111] ground state
(longitudinal) for the same QW structure of Fig. 3. It is
observed that the gap at the center of the (ellipitical) Dirac
cones of interface states from the oblique valleys opensmuch
faster than that for the longitudinal valley as the QW width
is reduced (recall that in the figure only half of the gap is
seen as the hole states are given by the specular reflection at
E = 0) so that for thin wells the QW low energy states are all
longitudinal. In Figure 8 typical results for the Rashba split
gapped elliptical cones of interface-bound states derived
from the oblique valleys in a [111] (L = 60 nm) asymmetric
PbSnT e T-QW are shown. The obtained spin-splitting and
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well-width dependence are presented in Figure 9 where the
dispersion relations of Fig. 8 are plotted for wave-vectors
along ŷ and x̂, compared with the results for QWs with well-
width twice as large and twice as smaller, and seen to present
the expected gap opening with decreasing L and typical
Rashba SO splittings, except for the inplane anisotropy and
the massless dispersions for large L and small gap.

In conclusion we have discussed the theory of the elec-
tronic structure of IV-VI semiconductor topological QWs
and its new features with respect to the well known GaAs-
like normal QWs. Within envelope-function and four-band
k ⋅ p approximations, analytical expressions were obtained
that give the energy spectra of this new class of semi-
conductor QWs, including the new and technological spin-
polarized Dirac states bound to the inverted-gap interfaces.
With specific and quantitative results for simple three layer
Pb1−xSnxT e T-QWs, the effects of varying well-width,
growth direction, band-offset, valley type and that of spin-
orbit splitting in asymmetric QWs were shown. Detailed re-
sults for the spin splitting of such in-gap states in asymmetric
IV-VI T-QWs demostrate different behavious compared to
the better known III-VRashba effect besides values near one-
order of magnitude larger. The theory and specific results
presented are bound to help the development and fabrication
of new electronic devices using IV-VI T-QWs.
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