101 research outputs found
Bringing the Semantic Web home: a research agenda for local, personalized SWUI
We suggest that by taking the Semantic Web local and personal, and deploying it as a shared "data sea" for all applications to trawl, new types of interaction are possible (even necessitated) with this heterogeneous source integration. We present a motivating scenario to foreground the kind of interaction we envision as possible, and outline a series of associated questions about data integration issues, and in particular about the interaction challenges fostered by these new possibilities. We sketch out some early approaches to these questions, but our goal is to identify a wider field of questions for the SWUI community in considering the implications of a local/social semantic web, not just a public one, for interaction
Mixing the reactive with the personal: Opportunities for end-user programming in personal information management
The transition of personal information management (PIM) tools off the desktop to the Web presents an opportunity to augment these tools with capabilities provided by the wealth of real-time information readily available. In this chapter, we describe a personal information assistance engine that lets end-users delegate to it various simple context- and activity-reactive tasks and reminders. Our system, Atomate, treats RSS/ATOM feeds from social networking and life-tracking sites as sensor streams, integrating information from such feeds into a simple unified RDF world model representing people, places and things and their time-varying states and activities. Combined with other information sources on the web, including the user's online calendar, web-based e-mail client, news feeds and messaging services, Atomate can be made to automatically carry out a variety of simple tasks for the user, ranging from context-aware filtering and messaging, to sharing and social coordination actions. Atomate's open architecture and world model easily accommodate new information sources and actions via the addition of feeds and web services. To make routine use of the system easy for non-programmers, Atomate provides a constrained-input natural language interface (CNLI) for behavior specification, and a direct-manipulation interface for inspecting and updating its world model
Simplifying knowledge creation and access for end-users on the SW
In this position paper, we argue that improved mechanisms for knowledge acquisition and access on the semantic web (SW) will be necessary before it will be adopted widely by end-users. In particular, we propose an investigation surrounding improved languages for knowledge exchange, better UI mechanisms for interaction, and potential help from user modeling to enable accurate, efficient, SW knowledge modeling for everyone
AtomsMasher: Personal Reactive Automation for the Web
The rise of "Web 2.0" has seen an explosion of web sites for the social sharing of personal information. To enable users to make valuable use of the rich yet fragmented sea of public, social, and personal information, data mashups emerged to provide a means for combining and filtering such information into coherent feeds and visualizations. In this paper we present AtomsMasher (AM), a new framework which extends data mashups into the realm of context-aware reactive behaviors. Reactive scripts in AM can be made to trigger automatically in response to changes in its world model derived from multiple web-based data feeds. By exposing a simple state-model abstraction and query language abstractions of data derived from heterogeneous web feeds through a simulation-based interactive script debugging environment, AM greatly simplifies the process of creating such automation in a way that is flexible, predictable, scalable and within the reach of everyday Web programmers
Functional redundancy of non-volant small mammals increases in human-modified habitats
Aim: Humans are rapidly altering natural habitats across much of the globe. Here we compared 264 globally distributed communities in natural and human-modified habitats to detect changes in community richness and functional diversity with human influence. Location: Global. Taxon: Non-volant small mammals. Methods: We calculated differences in observed to potential species richness (ÎSR) and observed to potential functional diversity (ÎFD) to account for regional pool differences. Then we determined the prevalence of four distinct scenarios of richness and functional diversity differences between human-modified and natural habitats, and evaluated local and geographical variation in these differences. We obtained potential richness by calculating a probabilistic species pool and obtained potential functional diversity through the n-dimensional hypervolume based on pool composition. We tested for differences in average ÎSR and ÎFD between habitats, and determined the most common scenario of ÎSR and ÎFD in human-modified and natural habitats. Results: We found lower ÎSR in human-modified than natural habitats, but no difference in ÎFD. Low ÎSR and high ÎFD predominated in human-modified habitats, and high ÎSR and ÎFD in natural habitats. Low ÎSR and high ÎFD predominated in temperate forests, whereas high ÎSR and ÎFD in tropical forests and grasslands. Scenarios of low ÎSR and high ÎFD, and high ÎSR and low ÎFD, were most common in human-modified and natural habitats of temperate grasslands. Main conclusions: A larger richness in human-modified habitats does not result in larger functional diversity. Rather there seems to be an increase in functional redundancy because species which profit from human modification do not bring new functions into human-modified habitats. While greater richness is found in humanmodified habitats from temperate biomes, this is not the case in extremely biodiverse tropical biomes. Assuming a positive relationship between richness, functional traits and ecosystem function, greater richness in modified habitats may not yield greater function
Implementation of the interdisciplinary curriculum Teaching and Assessing Communicative Competence in the fourth academic year of medical studies (CoMeD)
Introduction: Implementation of a longitudinal curriculum for training in advanced communications skills represents an unmet need in most German medical faculties, especially in the 4rth and 5th years of medical studies. The CoMeD project (communication in medical education DĂŒsseldorf) attempted to establish an interdisciplinary program to teach and to assess communicative competence in the 4th academic year. In this paper, we describe the development of the project and report results of its evaluation by medical students
Family resilience of families with parental cancer and minor children: a qualitative analysis
IntroductionEstimated 50,000 minor children in Germany experience a newly diagnosed cancer in one of their parents every year. Family resilience has proven to be an important concept against life crises. However, little research exists regarding family resilience in the context of parental cancer with minor children. Based on the âFamily Resilience Framework,â the aim of the study is to investigate the processes of family resilience of affected families. In addition, we explore which combinations of promoting family resilience processes can be characterized.MethodsAs part of the mixed-method quasi-experimental interventional study âF-SCOUT,â a qualitative content analysis was used to analyze the documentation of the âFamily-Scoutsâ (a fixed contact person who advises, accompanies, and supports the families). Documentation was performed by familiesâ study inclusion (T0), after 3âmonths (T1) and 9âmonths (T2) concerning current family situation, organization of everyday life, emotional coping, open communication within the family, and planned tasks.ResultsThe Nâ=â73 families had between one and six children. In 58 (79%) families, the mother had cancer. In the course of the analysis, a category system with 10 main categories and 36 subcategories emerged. Family resilience processes were described to different extents. Combinations of categories promoting family resilience were characterized by the use of social resources, flexibility, economic resources, and open communication.DiscussionThe findings are consistent with existing assumptions about family resilience in terms of the importance of social resources, family cohesion, mutual support, flexibility, open communication, and psychological well-being. In contrast to the findings of previous research, spirituality, and collaborative problem-solving indicate less centrality here. In turn, the findings on economic resources and information-seeking provide a valuable addition to the family resilience literature in the context of parental cancer with minor children.Clinical trial registrationClinicalTrials.gov, identifier NCT04186923
Recommended from our members
An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiate (OC-CCI)
Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea viewingWide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation
coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel
A Compilation of Global Bio-Optical In Situ Data for Ocean-Colour Satellite Applications
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015)
- âŠ