1,152 research outputs found

    Spin-valley blockade in carbon nanotube double quantum dots

    Full text link
    We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in semiconducting carbon nanotubes. In our model we take into account the following characteristic features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels, (ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-valley blockade can be lifted in the presence of short-range disorder, which induces two independent random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit interaction, we identify a parameter regime where the current as the function of an applied axial magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude, in agreement with recent experiments.Comment: 15 pages, 6 figures, 2 tables; v2: published versio

    Variational wave functions for homogenous Bose systems

    Full text link
    We study variational wave functions of the product form, factorizing according to the wave vectors k, for the ground state of a system of bosons interacting via positive pair interactions with a positive Fourier transform. Our trial functions are members of different orthonormal bases in Fock space. Each basis contains a quasiparticle vacuum state and states with an arbitrary finite number of quasiparticles. One of the bases is that of Valatin and Butler (VB), introduced fifty years ago and parametrized by an infinite set of variables determining Bogoliubov's canonical transformation for each k. In another case, inspired by Nozi\`eres and Saint James the canonical transformation for k=0 is replaced by a shift in the creation/annihilation operators. For the VB basis we prove that the lowest energy is obtained in a state with ~sqrt{volume} quasiparticles in the zero mode. The number of k=0 physical particles is of the order of the volume and its fluctuation is anomalously large, resulting in an excess energy. The same fluctuation is normal in the second type of optimized bases, the minimum energy is smaller and is attained in a vacuum state. Associated quasiparticle theories and questions about the gap in their spectrum are also discussed

    Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    Get PDF
    We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup. The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications.Comment: 5 pages, 3 figures + appendix; published versio
    • …
    corecore