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We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion
due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with
current capabilities, a quantum dot with an odd number of electrons can serve as a realization of the
Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural
mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level
subspaces, at small and large magnetic field, which can be used as qubits in this setup. The strong intrinsic
spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield

enhanced performance of nanotubes in sensing applications.
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Recent experiments in nanomechanics have reached the
ultimate quantum limit by cooling a nanomechanical sys-
tem close to its ground state [1]. Among the variety of
available nanomechanical systems, nanostructures made
out of atomically-thin carbon-based materials such as gra-
phene and carbon nanotubes (CNTs) stand out due to their
low masses and high stiffnesses. These properties give rise
to high oscillation frequencies, potentially enabling near
ground-state cooling using conventional cryogenics, and
large zero-point motion, which improves the ease of
detection [2,3].

Recently, a high quality-factor suspended CNT resona-
tor was used to demonstrate strong coupling between nano-
mechanical motion and single-charge tunneling through a
quantum dot (QD) defined in the CNT [4]. Here, we
theoretically investigate the coupling of a single electron
spin to the quantized motion of a discrete flexural mode of
a suspended CNT (see Fig. 1), and show that the strong-
coupling regime of this Jaynes-Cummings-type system is
within reach. This coupling provides means for electrical
manipulation of the electron spin via microwave irradia-
tion, and leads to strong nonlinearities in the CNT’s me-
chanical response which may potentially be used for
enhanced functionality in sensing applications [5-7].

In addition to their outstanding mechanical properties,
carbon-based systems also possess many attractive charac-
teristics for information processing applications. The po-
tential for single electron spins in QDs to serve as the
elementary qubits for quantum information processing
[8] is currently being investigated in a variety of systems.
In many materials, such as GaAs, the hyperfine interaction
between electron and nuclear spins is the primary source of
electron spin decoherence which limits qubit performance
(see, e.g., [9]). However, carbon-based structures can be
grown using starting materials isotopically-enriched in
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12C, which has no net nuclear spin, thus practically elim-
inating the hyperfine mechanism of decoherence [10],
leaving behind only a spin-orbit contribution [11,12].
Furthermore, while the phonon continuum in bulk materi-
als provides the primary bath enabling spin relaxation, the
discretized phonon spectrum of a suspended CNT can be
engineered to have an extremely low density of states at the
qubit (spin) energy splitting. Thus very long spin lifetimes
are expected off-resonance [13]. On the other hand, when
the spin splitting is nearly resonant with one of the high-Q
discrete phonon “‘cavity”” modes, strong spin-phonon cou-
pling can enable qubit control, information transfer, or the
preparation of entangled states.

The interaction between nanomechanical resonators and
single spins was recently detected [14], and has been
theoretically investigated [15,16] for cases where the
spin-resonator coupling arises from the relative motion of
the spin and a source of local magnetic field gradients.

electron

S

nanotube

support

FIG. 1 (color online). Schematic of a suspended CNT contain-
ing a quantum dot filled with a single electron spin. The spin-
orbit coupling in the CNT induces a strong coupling between the
spin and the quantized mechanical motion of the CNT.
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Such coupling is achieved, e.g., using a magnetic tip on a
vibrating cantilever which can be positioned close to an
isolated spin fixed to a nonmoving substrate. Creating
strong, well-controlled, local gradients remains challeng-
ing for such setups. In contrast, as we now describe, in
CNTs the spin-mechanical coupling is intrinsic, supplied
by the inherent strong spin-orbit coupling [17-20] which
was recently discovered by Kuemmeth et al. [21].

Consider an electron localized in a suspended CNT
quantum dot (see Fig. 1). Below we focus on the case of
a single electron, but expect the qualitative features to be
valid for any odd occupancy (see Ref. [22]). We work in the
experimentally relevant parameter regime where the spin-
orbit and orbital-Zeeman couplings are small compared
with the nanotube band gap and the energy of the longitu-
dinal motion in the QD. Here, the longitudinal and sub-
lattice orbital degrees of freedom are effectively frozen
out, leaving behind a nominally fourfold degenerate low-
energy subspace associated with the remaining spin and
valley degrees of freedom (see Refs. [23,24]).

A simple model describing the spin and valley dynamics
in this low-energy QD subspace, incorporating the cou-
pling of electron spin to deflections associated with the
flexural modes of the CNT [25,26], was introduced in
Ref. [27]. In principle, the deformation-potential spin-
phonon coupling mechanism [11] is also present. The
deflection coupling mechanism is expected to dominate
at long phonon wavelengths, while the deformation-
potential coupling should dominate at short wavelengths
(see discussion in [27]). For simplicity we consider only
the deflection coupling mechanism, but note that the
approach can readily be extended to include both effects.

The Hamiltonian describing this system is [24,27,28]

A
H= f73(5 : t) + AKK’TI - Iu‘orbTS(B : t) + IL’LB(S ’ B)’
(1

where A, and Agg denote the spin-orbit and intervalley
couplings, 7; and s; are the Pauli matrices in valley and
spin space (the pseudospin is frozen out for the states
localized in a QD), t is the tangent vector along the CNT
axis, and B denotes the magnetic field. Note that the spin-
orbit coupling has contributions which are diagonal and
off-diagonal in sublattice space [18-20,22]. When pro-
jected onto to a single longitudinal mode of the quantum
dot, the effective Hamiltonian given above describes the
coupling of the spin to the nanotube deflection at the
location of the dot [24].

For a nominally straight CNT we take t pointing along
the z direction, giving s - t = 5, and B - t = B,. Here we
find the low-energy spectrum shown in Fig. 2. The two
boxed regions indicate two different two-level systems that
can be envisioned as qubit implementations in this setup:
we define a spin qubit [8] (S) at strong longitudinal mag-
netic field, near the value B* of the upper level crossing,
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FIG. 2 (color online). Energy levels of the four dimensional
(due to spin and valley) orbital ground state subspace of the QD,
as a function of the magnetic field parallel (B)) and perpendicu-
lar (B ) to the CNT axis. The boxed areas indicate the working
regime for the spin qubit (S) and Kramers qubit (K), the latter
being operated either in a longitudinal (Kz) or perpendicular
(Kx) magnetic field. Parameter values [30]: Ay, = 170 weV,
Agg = 12.5 peV, uop = 330 ueV/T.

and a mixed spin-valley or Kramers (K) qubit [28], which
can be operated at low fields applied either in the longitu-
dinal (Kz) or perpendicular (Kx) directions.

We now study how these qubits couple to the quantized
mechanical motion of the CNT. For simplicity we consider
only a single polarization of flexural motion (along the x
direction), assuming that the two-fold degeneracy is bro-
ken, e.g., by an external electric field. A generalization to
two modes is straightforward.

A generic deformation of the CNT with deflection u(z)
makes the tangent vector t(z) coordinate-dependent.
Expanding t(z) for small deflections, we rewrite the cou-
pling terms in Hamiltonian (1) as s - t = s, + (du/dz)s,
and B-t=B_+ (du/dz)B,. Expressing the deflection
u(z) in terms of the creation and annihilation operators
a' and a for a quantized flexural phonon mode, u(z) =

f(z)%(a + a'), where f(z) and €, are the waveform and

zero-point amplitude of the phonon mode, we find that
each of the three qubit types (S, Kx, Kz) obtains a coupling
to the oscillator mode which we describe as

Pq

H
% o3+ gla+ah)o, + a)paTa

2
+ 2A(a + a') coswr. (2)

Here the matrices o 5 are Pauli matrices acting on the two-
level qubit subspace, and we have included a term describ-
ing external driving of the oscillator with frequency @ and
coupling strength A, which can be achieved by coupling to
the ac electric field of a nearby antenna [4]. Below we
describe the dependence of the qubit-oscillator coupling g
on system parameters for each qubit type (S, Kx, or Kz).
The derivation of Eq. (2) is detailed in [24].

For the spin qubit (), the relevant twofold degree of
freedom is the spin of the electron itself. Therefore in
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Eq. (2) we have o3 = s, and 0| = s,, and the qubit levels
are split by the Zeeman energy, measured relative to the
value B* where the spin-orbit-split levels cross, hw, =
up(B — B¥). A spin magnetic moment of wp is assumed,
and B* = A, /2up for Agx < A,,. For the qubit-
resonator coupling, we find g = A (f")€y/2+/2, indepen-
dent of B. Here, (f’) is the derivative of the waveform of
the phonon mode averaged against the electron density
profile in the QD.

For a symmetric QD, positioned at the midpoint of the
CNT, the coupling matrix element proportional to (f’)
vanishes for the fundamental and all even harmonics (the
opposite would be true for the deformation-potential cou-
pling mechanism). The cancellation is avoided for a QD
positioned away from the symmetry point of the CNT, or
for coupling to odd harmonics. Here, for concreteness, we
consider coupling of a symmetric QD to the first vibra-
tional harmonic of the CNT. Using realistic parameter
values [4,21,29,30], L =400 nm, €, =2.5 pm, A, =
370 ueV, Aggxr = 32.5 ueV, wop = 1550 weV/T, and
w,/2m =500 MHz, we find g/27 =~ 0.56 MHz, irre-
spective of the magnetic field strength B along the CNT.

For the Kramers qubits (Kx and Kz), both w, and g
depend on B. The qubit splitting for the Kx qubit is
controlled by the perpendicular field, hw, =
up(2Agk /A)B,, while for the Kz qubit, it is controlled
by the longitudinal field hw, = (up + on(As/A))B,,

where A = 4[AZ +4AZ,
between the two Kramers pairs. Resonant coupling occurs
when @, = w,. This condition sets the relevant value of
B, (B,) in the case of the Kx (Kz) qubit; the parameters
above yield B, = 103 mT (B, = 0.6 mT).

The qubit-cavity coupling for the Kx qubit increases
linearly with the applied perpendicular field, hg =
_(<]N>€O/\/§)(/-"’orbAso/A + MBAEO A2)Bx7 while for the
Kz qubit it scales with the longitudinal field, hg =
{(F)o/V2) (om2A kg Ao /A?)B,. Using the values of
B, and B, obtained above, we estimate couplings of
g/2m = 0.49 MHz for the Kx qubit, and g/27 =
0.52 kHz for the Kz qubit. Thus the coupling for the Kx
qubit is comparable to that of the spin qubit, while the
coupling of the Kz qubit is much weaker. Therefore, we
restrict our considerations to the spin and Kx qubits below.

Ref. [4] reports the fabrication of CNT resonators with
quality factors Q = 150, 000. We take Q = 63, 000 for the
following estimate. Together with the oscillator frequency
w,/2m = 500 MHz, this value of Q implies an oscillator
damping rate of I' = 5 X 10* s™! < g. Because of the
near-zero density of states of other phonon modes at w,,
it is reasonable to assume a very low spontaneous qubit
relaxation rate ©y. These observations suggest that the so-
called “‘strong coupling” regime of qubit-oscillator inter-
action, defined as I', y < g, can be reached with CNT
resonators.

denotes the zero-field splitting

To quantify the system’s response in the anticipated
parameter regime, we study the coupled qubit-oscillator
dynamics using a master equation which takes into account
the finite lifetime of the phonon mode as well as the
nonzero temperature of the external phonon bath. For
weak driving, A K w,, and 0w, ~ 0w, ~ 0 > g, we
move to a rotating frame and use the rotating wave
approximation (RWA) to map the Hamiltonian, Eq. (2),
into Jaynes-Cummings form [31]

H, @
RhWA = 7”0'3 + glaoc, +ato )+ cb,,a*a
+ Ma + a'), (3)

where @; = w; — w. Including the nonunitary dynamics
associated with the phonon-bath coupling, the master
equation for the qubit-oscillator density matrix p reads:

i 1
p = = +THoun. 1+ (mp + D7 apat = 3 lata. p})
1
+ nBF<ana — E{aaT, p}) 4)

where ng = 1/(e"»/%" — 1) is the bath-mode Bose-
Einstein occupation factor, and kp is the Boltzmann
constant.

Because of the phonon damping, in the long-time limit
the system is expected to tend towards a steady state,
described by the density matrix p. We study these steady
states, found by setting p =0 in Eq. (4), using both
numerical and semiclassical analytical methods. In
Figs. 3(a) and 3(c) we show the steady-state phonon occu-
pation probability distribution P(Sw, n) as a function of the
drive frequency-phonon frequency detuning dw = — &,
and the phonon occupation number 7, for the case where
the qubit and oscillator frequencies are fixed and degener-
ate, w, = w, (see caption for parameter values). Panels a
and c compare the cases with and without qubit-oscillator
coupling. In Figs. 3(b) and 3(d) we show the averaged
phonon occupation number i(Sw) = ¥, nP(Sw, n), which
is closely related to the mean squared resonator displace-
ment in the steady state: X? = x? = €3(7 + 1). For g # 0,
we observe a splitting of the oscillator resonance, which is
characteristic of the coupling to the two-level system, and
can serve as an experimental signature of the qubit-
oscillator coupling. For drive frequencies near the
split peaks, the phonon number distribution is bimodal
[Fig. 3(f)] showing peaks at n = 0 and at high-n, indicat-
ing bistable behavior (see below).

For strong excitation, where the mean phonon occupa-
tion is large, we expect a semiclassical approach to capture
the main features of the system’s dynamics [32,33].
Extending the approach described in [32] to include dis-
tinct values of the qubit, oscillator, and drive frequencies,
w, w,, and w, we derive semiclassical equations of mo-
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FIG. 3 (color online). Response of the spin-oscillator system. (a) Phonon number probability distribution P(n, Sw), (b) average
phonon occupation 7 and root mean squared displacement X of the uncoupled driven CNT resonator (g = 0), as functions of the drive
frequency—oscillator frequency detuning 6w = @ — w,,. The parameters are T = 50 mK, w,/27 = 500 MHz, I' = 5 X 10* 57!
and A/27 = 0.027 MHz. The same quantities are plotted in (c) and (d) for a resonantly coupled qubit-oscillator system (i.e., @, =
w ), with coupling constant g /27 = 0.5 MHz and further parameters as in (a) and (b). (e) Steady-state oscillator response from the
semiclassical calculation, corresponding to the parameters of (c) and (d). The green solid (purple dashed) lines describe stable
(unstable) solutions. (f) Bimodal phonon number distribution, taken along the dashed vertical line of (c). (g,h) Root mean squared
value X of the resonator amplitude in the coupled spin qubit-oscillator system at (g) 7 = 0 and (h) 7 = 50 mK, as functions of
magnetic field detuning 6B (detuning the qubit frequency away from resonance with the oscillator) and drive frequency-oscillator

frequency detuning w.

tion for the mean spin and oscillator variables (see [24]).
The steady-state values of the mean squared oscillator
amplitude obtained from the resulting nonlinear system
are shown in Fig. 3(e). In the vicinity of the split peak
we find two branches of stable steady-state solutions,
indicative of bistable or hysteretic behavior [4]. The semi-
classical results in Fig. 3(e) are in correspondence with the
phonon number distribution in Fig. 3(c), and explain its
bimodal character. Similar oscillator instabilities have
been used as the basis for a sensitive readout scheme in
superconducting qubits [34], and may potentially be useful
for mass or magnetic field sensing applications where
small changes of frequency need to be detected.

To predict the oscillator response to be detected via a
charge sensor (see below), we solve for the stationary state
of Eq. (4) directly for a range of driving frequencies, qubit-
oscillator detunings (set by the magnetic field), and
temperatures 7. In Figs. 3(g) and 3(h), we show the T =
0 and 7 = 50 mK root mean squared oscillator amplitude
X o 4/ + 1/2 as function of magnetic field B and drive
frequency, for the case of a spin (§) qubit. The value 6B =
0 corresponds to resonant coupling w, = w,,. These re-
sults also apply for the Kx qubit, if the magnetic field axis
is adjusted appropriately. In the zero-temperature case,
only half of the eigenstates hw. = hw, + hg*/(w, —
w,) of Eq. (3) can be efficiently excited by the drive
at fixed 6B, giving rise to the upper (lower) feature in
Fig. 3(g) for 6B <0(6B > 0). However, for T = hw,,

both branches of the Jaynes-Cummings ladder can be
efficiently excited [Fig. 3(h)]. This is a distinct and experi-
mentally accessible signature of the strong coupling at
finite temperature. Note that the vacuum Rabi splitting is
also observed [see arrows in Fig. 3(d)], but features arising
from nonlinearity in the strongly driven system dominate
by more than 2 orders of magnitude.

Displacement detection of nanomechanical systems is
possible using charge sensing [5,35], where the conduc-
tance of a mesoscopic conductor, such as a QD or quantum
point contact, is modulated via capacitve coupling to the
charged mechanical resonator. Furthermore, the qubit state
itself can be read out using spin-detection schemes devel-
oped for semiconductor QDs [36], or by a dispersive read-
out scheme like that commonly used in superconducting
qubits coupled to microwave resonators [37]. The disper-
sive regime can be rapidly accessed by, e.g., tuning the
resonator frequency using dc gate pulses which control the
tension in the CNT [4].

In summary, we predict that strong qubit-resonator cou-
pling can be realized in suspended CNT QDs with current
state-of-the-art devices. The coupling described here may
find use in sensing applications, and in spin-based quantum
information processing, where the CNT oscillator enables
electrical control of the electron spin, and, with capacitive
couplers, may provide long-range interactions between
distant electronic qubits [16,38]. Combined with control
of the qubit via electron-spin-resonance [39], the mecha-
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nism studied here could be utilized for ground-state cool-
ing and for generating arbitrary motional quantum states of
the oscillator [15].
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While completing this manuscript, we became aware of
a related work [40] that describes the theory of the spin-
phonon coupling in a CNT resonator QD, and its conse-
quences in the spin blockade transport setup.
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