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On non-modular «-distributive lattices: 
The decision problem for identities in finite »-distributive lattices 

A . P . H U H N 

To Professor K. Tandori on his sixtieth birthday 

1. Introduction. It was proved in [1] that the lattice <i(R"~2) of all convex sets 
of the n — 1 dimensional Euclidean space R"~1 is a member of the lattice variety 
D* generated by the finite «-distributive lattices. It is an open question whether this 
variety equals D„, the class of all «-distributive lattices. An answer might be based 
on a solution to the word problem for free lattices in D„. In this paper we accomplish 
a slightly different task and solve the word problem for free lattices in D{. Besides, 
we give a new example of a lattice in this variety, namely we show that the dual of 
( £ ( / ? " " i s a member of D{, too. 

We need some notions of universal algebra and lattice theory. By an «-distri-
butive lattice we mean a lattice satisfying the identity 

*A v y¡ = V (*A V y,)-
i = 0 j=0 ¡=0 

A lattice variety is a class, of lattices that can be characterized by a set of identities. 
The variety generated by a class AT of lattices is the smallest lattice variety containing 
K. The decision problem for identities in a class K of lattices is the problem of find-
ing an algorithm which, given any identity p—q, decides whether p=q holds in 
every member of K or not. It is equivalent to the word problem for free lattices in 
the variety generated by K. 

We are going to use the following concepts concerning convex sets. Let a, r0€ R"~ \ 
Then the set of all r d R " ' 1 such that the scalar product (a, r—r0) equals 0, is called 
a hyperplane. The set of all r with (a, r— r 0 ) s0 is called a (closed) halfspace. A finite 
intersection of halfspaces is a convex polyhedron. The convex closure of a finite 
number of points is a convex polytope. It is well-known that convex polytopes, 
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convex polyhedra and convex sets of R"-1 all form lattices, and that in all these three 
lattices the operations are the intersection and the convex closure of two convex sets. 
(See [2].) Convex polytopes are exactly the bounded convex polyhedra, thus, in the 
above list, the former lattice is always a proper sublattice of the latter one. 

2. On the dual of (E(fln_1). We prove the following theorem. 

T h e o r e m 2.1. The dual of(i(Rn~1) is a member of the variety 

P r o o f . In [1], Lemma 3.1, it was shown that G(/ i" - 1) is a member of the variety 
generated by the lattice Gf in(/?n_1) of all n — 1 dimensional convex polytopes, there-
fore, it is also a member of the variety generated by £jj"n(/?n-1) of all n — 1 dimensio-
nal convex polyhedra. Thus it is sufficient to show that the latter lattice is a member of 
the variety generated by all finite dually «-distributive lattices. By Theorem 1.1 of 
[1], is dually «-distributive and its meet-irreducible elements are exactly 
the halfspaces of R"~1. Let K be a finite set of halfspaces and let (K) consist of 
all those convex polyhedra that are intersections of elements of K. (K) is a lattice 
ordered by the inclusion relation, in fact, it is a meet-sublattice of Ggn(/?"_1). Let 
Jf denote the set of all finite subsets of the set of all halfspaces of R"~1. The following 
two facts obviously include Theorem 2.1. 

L e m m a 2.2. For any Â E JT, (K) is dually n-distributive. 

L e m m a 2.3. is a member of the variety generated by all (K)i 
K£Jf. 

P r o o f of L e m m a 2.2. The dual «-distributivity of and the meet-
irreducibility of halfspaces in it imply that whenever a halfspace contains the inter-
section of a finite number of other halfspaces, then it contains the intersection of n 
of these halfspaces. In fact, let h, hx, ..., hm, m>n, be halfspaces and assume that h 
contains the intersection of the ht, i=l, 2 , . . . , m. Then (denoting by V the convex 
closure) 

m 

h = h\/riht= D ( W f | * i ) , 
i = l LE{ 1 m} i e t 

~[L| =n 

and, by the irreducibility of h, there is an L, \L\=n with 

h = JtV n ht, i.e., /lin ht. 
i€K i£JC 

Clearly, the lattices (K) also satisfy this property, as it refers only to inclusion and 
intersection, which coincide in ( ^ ( i t " - 1 ) with those in (K). This, in turn, implies 
that the lattices £~(AT) are also dually n-distributive. To prove this, let a, b0, ... 
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..., bn£(i~(K). Let h£K, and assume that 

h 3 aVH n K 
i = 0 

Then h contains a and h also contains n of the halfspaces occurring in the meet-
representations of the b's. Thus h contains n of the ¿¡'s, too, that is, 

h i n (aV* f l *>.)• 
j=0 ¡=0 

n n 
Thus the meet-representations of a\JB P| bt and of p| (aVH D b,) coincide. 

i = 0 7 = 0 1 = 0 
M7 

P r o o f of L e m m a 2.3. Let p ^ q be an w-ary lattice inequality holding in 
all the lattices (K), Let ax, ..., a m € ^ n ( R " _ 1 ) . Let A be the set of sub-
polynomials o f p , that is, (i) let p£A, (ii) for P\ t \Pi£A or P i ^ J p ^ A let P i , p 2 £ A , 
and (iii) let A be minimal relative to (i) and (ii). Let B be the set of subpolynomials 
of q. Finally let C be the set of all polyhedra r(a±, ..., am), r£A UB, and let K be the 
set of all halfspaces occurring in the irredundant meet-representation of one of the 
elements of C. (A polyhedron can be represented as an intersection of halfspaces in 
different ways, however, the irredundant meet-representation is unique.) Let the reali-
zation of a polynomial r in the lattice (R"~ *) be also denoted by r and let its reali-
zation in (E- (K) be denoted by rK. Then 

P(a ...,am) = pK(a1,...,am) fe qK(alt..., am) = q(ax, ...,aj, 

as K was chosen exactly to satisfy the two equalities in the above calculation. 

3. On the variety DHere we deal with the word problem for free lattices of 
in other words with the decision problem for identities in D ' . 

T h e o r e m 3.1. The word problem for free lattices in D{ is solvable. 

Before the proof we introduce some notations. Clearly, every lattice polynomial 
p can be written in the form 

(1) p= V A V ... A V 

if we allow I and the . ' s to consist of one element. We define the depth d(j>) of 
p by d(p):=k. m(p) denotes the length (that is, the number of components) in the 
longest meet: 

m(p) = max {max |/ix[, max |J l l f i l , | , . . .} . 
C •» 'jti 
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Now define 

c„ (p) := 1 + n + n2 • m (p)+n3 • (m (p))2+... + n«1^ • (m (p))'™-1. 

We are ready to formulate the following lemma. 

L e m m a 3.2. Let p=q be a lattice inequality holding in all finite n-distributive 
lattices containing at most cn(p) join-irreducible elements. Then p^q holds in every 

finite n-distributive lattice. 

To decide whether p^q holds in Df
n requires now to check those finite «-distri-

butive lattices having at most c„(p) join-irreducibles. This can be carried out in finite 
time, hence Lemma 3.2 implies Theorem 3.1. 

P r o o f of t h e l e m m a . Let L be a finite lattice, l e t p and q be lattice polyno-
mials in m variables and let at, ..., am£L. Let K denote the set of join-irreducible 
elements of L. For a lattice polynomial r, let rL denote the realization of r on L. Let 
b£K and let b^pL(al, ..., am). Under the hypotheses of the lemma, we shall prove 
that b^qL(a1, ..., am). Let us introduce the following notations for subpolynomials 
of p. (p is defined by (1).) 

Ph= A V ••• A V ^., . . .^-1» 

P h h = V ••• A V x h . . . h k - i ' h t l n , 

etc. Now, by the assumption on b, we have 

b ^ V . . . . « J -
i 

Each pfi(a1, ...,am) is a join of join-irreducibles. By the n-distributivity of L, we 
may choose n of these join-irreducibles, say bx, ...,bn such that 

b ^ \ f b j . 
7 = 1 

(A detailed proof of this fact can be given by dualizing and generalizing the first part 
of the proof of Lemma 2.2.) Now assign to each bj one (and only one) pf (ax, ..., am) 
such that ' .. 

bj ^ ^(fli,..., am). 

Then, for every bj, if p f f a , ..., am) is assigned to b}, we have 

b j - Pi[h(ai' • • •> O , 
that is, 

bj ^ V pf-li2i3(al>- -'am), »'2€4-
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Now we carry out the same construction in these |/ fJ different cases on b j and on 
V P u i , a 2 , . am), with which we started on b and on V pf(o1, am) : 

^ V * , ! 3 ha 1 

For arbitrary fixed choose join-irreducibles bjitl, ..., ¿J i jn of L such that 

bj S V bJkl. 1=1 

Again, each b j , is less than or equal to one of the />£,y3(ai> •••> am)'s- Assign a 
-Pf , ; , , ^ , . . . ,öm) to b j i j such that 

bjhl = PhhiÁa i' • • O. 

etc. Let /f0 be the set of join-irreducibles defined during this procedure, that is, 

= {b}U...,uu Ű u {bJh1,....fc.uu.... 
i, is 

assigned 
to J 

Clearly, IK 0 \^c„(p) . Let a ,= V c. 
ciK o 

Let, furthermore, Z,0 consist of all joins of elements of K0. Then, by the definitions 
of K0, L0 and of Si, b^p^i^, ..., am). By the hypotheses, pL°(al, ..., am)S 
Sq^iay, ..., am). (Here we need the «-distributivity of L0, which is a consequence 
of the fact that whenever a join-irreducible element in L0 is less than or equal to a join 
of elements of L0, then it is less than or equal to an «-element subjoin of that join.) 
We obviously have qL°(<ii, • ••, a m ) — • • • > d m )^q L (a 1 , •••> O - Hence b s 
^qL(a±, ..., am), as claimed. 
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