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On non-modular n-distributive lattices:
The decision problem for identities in finite n-distributive lattices

A. P. HUHN

To Professor K. Tandori on his sixtieth birthday

1. Introduction. It was proved in [1] that the lattice €(R"~7) of all convex sets
of the n—1 dimensional Euclidean space R*~' is a member of the lattice variety
D{ generated by the finite n-distributive lattices. It is an open- question whether this
variety equals D,, the class of all n-distributive lattices. An answer might be based
on a solution to the word problem for freelattices in D,,. In this paper we accomplish
a slightly different task and solve the word problem for free lattices in D. Besides,
we give a new example of a lattice in this variety, namely we show that the dual of
€(R"Y) is a member of D!, too.

We need some notions of universal algebra and lattice theory. By an n-distri-
butive lattice we mean a lattice satisfying the identity

xA V y;=V (xA V »)
i=0 j=0 i=0 X
izj R
A Iattice variety is a class. of lattices that can be characterized by a set of 1dent1t1es
The variety generated by a class K of lattices is the smallest lattice variety containing
K. The decision problem for identities in a class K of lattices is the problem of find-
ing an algorithm which, given any identity p=gq, decides whether p=¢ holds in
every member of K or not. It is equivalent to the word problem for free lattices in
the variety generated by K.

We are going to use the following concepts concerning convexsets. Let a, ro€ R* 2.,
Then the set of all r€ R™* such that the scalar product (a, r—r,) equals 0, is called
a hyperplane. The set of all rwith (a, r—rg) =0 is called a (closed) halfspace. A finite
intersection of halfspaces is a convex polyhedron. The convex closure of a finite
number of points is a convex polytope. It is well-known that convex polytopes,
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convex polyhedra and convex sets of R~ ! all form lattices, and that in all these three
lattices the operations are the intersection and the convex closure of two convex sets.
(See [2].) Convex polytopes are exactly the bounded convex polyhedra, thus, in the
above list, the former lattice is always a proper sublattice of the latter one.

2. On the dual of €(R" ). We prove the following theorem.
Theorem 2.1. The dual of €(R"") is a member of the variety D].

Proof. In[1], Lemma 3.1, it was shown that €(R"" 1) is a member of the variety
generated by the lattice €, (R~ ") of all n—1 dimensional convex polytopes, there-
fore, it is also a member of the variety generated by € (R"~?) of all n—1 dimensio-
nal convex polyhedra. Thus it is sufficient to show that the latter lattice is 2 member of
the variety generated by all finite dually n-distributive lattices. By Theorem 1.1 of
(1, € (R™™Y is dually n-distributive and its meet-irreducible elements are exactly
the halfspaces of R™~*. Let K be a finite set of halfspaces and let €~ (K) consist of
all those convex polyhedra that are intersections of elements of K. €~ (K) is a lattice
ordered by the inclusion relation, in fact, it is a meet-sublattice of €, (R"?). Let
A denote the set of all finite subsets of the set of all halfspaces of R, The following
two facts obviously include Theorem 2.1. ’

Lemma 2.2. For any KeX, € (K) is dually n-distributive.

Lemma 2.3. € (R"™Y) is a member of the variety generated by all G~ (K)s
Kedt. . .

Proof of Lemma 2.2. The dual n-distributivity of €, (R"~") and the meet-
irreducibility of halfspaces in it imply that whenever a halfspace contains the inter-
section of a finite number of other halfspaces, then it contains the intersection of n
of these halfspaces. In fact, let h, by, ..., h,,, m=n, be halfspaces and assume that h
contains the intersection of the h;, i=1, 2, ..., m. Then (denoting by V the convex
closure) : '

h=bVN h= (O (hV ﬂh,-),.
i= icL _

and, by the irreducibility of h, there 1s an L, |L|=n with

h=hV Nk, ie, K2 (b

i€K icK

Clearly, the lattices €~ (K) also satisfy this property, as it refers only to inclusion and
intersection, which coincide in €, (R"~*) with those in €~ (K). This, in turn, implies
that the lattices €~ (K) are also dually n-distributive. To prove this, let a, by, ...
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. b €€ (K). Let h€K, and assume that

Then h contains a and h also contains n of the halfspaces occurring in the meet-
representations of the b;’s. Thus h contains n of the b,s, too, that is,

Thus the meet-representations of avVg ("\ b; and of ("] (avg N b)) coincide.
i=0 i=0 i=0
i%j

Proof of Lemma 2.3. Let p=q be an m-ary lattice inequality holding in
all the lattices € (K), K¢&. Let ay, ..., €€ (RY). Let 4 be the set of sub-
polynomials of p, that is, (i) let p€ A, (ii) for pyAp;€A or p,Vps€A let p,, p.€A,
and (iii) let A be minimal relative to (i) and (ii). Let B be the set of subpolynomials
of g. Finally let C be the set of all polyhedra r(ay, -.., 4,), r*€ AUB, and let K be the
set of all halfspaces occurring in the irredundant meet-representation of one of the
elements of C. (A polyhedron can be represented as an intersection of halfspaces in
different ways, however, the irredundant meet-representation is unique.) Let the reali-
zation of a polynomial r in the lattice €, (R"~") be also denoted by r and let its reali-
zation in €~ (K) be denoted by rX. Then

p(ay, ..., a,) = p¥(ay, ..., ay) = g% (ay, ..., a) = q(@y, ..., ay),
as K was chosen exactly to satisfy the two equalities in the above calculation.

3. On the variety D/, Here we deal with the word problem for free lattices of
D,{ , in other words with the decision problem for identities in D;,r 5

Theorem 3.1. The word problem for free lattices in Df is solvable.

Before the proof we introduce some notations. Clearly, every lattice polynomial
p can be written in the form

(0] p=V A V .. A Y Xiy iz o1

Lel ixelil iséli iy fac-2€1; izk—lelil...'

1oeelgc -8 -2

if we allow 7 and the I; ;’s to consist of one element. We define the depth d(p) of
p by d(p):=k. m(p) denotes the length (that is, the number of components) in the
longest meet:

m(p) = max {maxl s max 11 iisls -}

I’EI
'setix i
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Now define
¢(p)i= 14n+n?-m(p)+n®- (M)l +... +n4® . (m(p))*» .
We are ready to formulate the following lemma.

Lemma 3.2. Let p=q be a lattice inequality holding in all finite n-distributive
lattices containing at most c,(p) join-irreducible elements. Then p=gq holds in every
Sfinite n-distributive lattice.

To decide whether p=g holds in D/ requires now to check those finite n-distri-
butive lattices having at most ¢,(p) join-irreducibles. This can be carried out in finite
time, hence Lemma 3.2 implies Theorem 3.1.

Proof of the lemma. Let L be a finite lattice, let p and ¢ be lattice polyno-
mials in m variables and let a,, ..., a,€L. Let K denote the set of join-irreducible
elements of L. For a lattice polynomial r, let r* denote the realization of r on L. Let
b€K andlet b=p’(ay, ..., a,). Under the hypotheses of the lemma, we shall prove
that b=q"(a, ..., a,)- Let us introduce the following notations for subpolynomials
of p. (p is defined by (1).)

pl'l: /\ V o /\ V xil...l'gk_l’ ilel9

A A AU A R L.l AP T
Pini, = \% AIEER A . V A i€l iel,
€y, -2 €Xy g o Gk €T iy,

etc. Now, by the assumption on b, we have
b = .VIplL;(ala Tt am)'

Each p," (@, ..., a,) is a-join of join-irreducibles. By the n-distributivity of L we
may choose 7 of these join-irreducibles, say b,, ..., b, such that

n

b=V b;
Jj=1
(A detailed proof of this fact can be given by dualizing and generalizing the first part
of the proof of Lemma 2.2.) Now assign to each b; one (and only one) pf(ay, ..., a,,)
such that ' . '
b; = pl(ay, ..., ay).

Then, for every b, if p(a, ..., a,) is assigned to b;, we have

. b= Ph(ans ), iy,
that 1s,
bj = V p'inz l's(ala vrey am)’ 12€ Il'l’

‘Sellll’
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Now we carry out the same construction in these |7 | different cases on b; and on
V  pii(a as, ..., a,), with which we started on b andon V pi(ay, ..., a,):
ihel

g€y,

For arbitrary fixed i,€J; choose join-irreducibles by 4, ..., b

Jign

of L such that
b; =V bj,.
1=1

Again, each b;,, is less than or equal to one of the p{;,.l,.s(al, - @,)'s. Assign a
pf;izis(a]$ ey Gy) 1O bji,l such that

L
bjig = Pl 1,1, (G15 - > Q)

etc. Let K, be the set of join-irreducibles defined during this procedure, that is,

K0= {b}U{bl,..., b"}U ~U1 U {bjiz-].,"" bjizn}U“"
i= -

i€l
iis
assigned
to j
Clearly, |Kj|=c,(p). Let a=V ec.
c€Kp
c=a; :

Let, furthermore, L, consist of all joins of elements of K. Then, by the definittons
of Ky, L, and of d;, b=p™(a,, ..., 4,). By the hypotheses, p'(dy, ..., 4,)=
=q(a,, ..., d,). (Here we need the n-distributivity of L,, which is a consequence
of the fact that whenever a join-irreducible element in L, is less than or equal to a join
of elements of L,, then it is less than or equal to an n-element subjoin of that join.)
We obviously have glo(d, ..., d,)=q"(4y, ..., d,)=4"(a,, ..., a,). Hence b=
=q"(ay, ..., a,), as claimed.
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