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On the representation of distributive algebraic lattices. I 
A. P. HUHN 

Dedicated to Professor Bela Szökefalvi-Nagy on his 70th birthday 

E. T. SCHMIDT [4] proved that every distributive lattice is isomorphic with the 
lattice of all compact congruences of a lattice. The analogous question for distri-
butive semilattices is a long-standing conjecture of lattice theory. In this paper 
we prove a theorem which can be considered as a further evidence to this conjecture. 
Our result is based on a theorem of P. Pudläk. Motivated by Schmidt's result, 
PUDLÄK [3] discovered another method suitable to attack the problem. He first 
proved that every distributive semilattice is the direct limit of its finite distributive 
subsemilattices. This reduces the conjecture to the following 

P r o b l e m . Consider the category of finite distributive lattices where the 
morphisms are the one-to-one O-preserving V-homomorphisms. Is there any functor 
R of this category to the category of finite lattices (with lattice embeddings) such 
that the following hold? 

(a) For any distributive lattice D, there is an isomorphism <pD: D=Cor\(R(D)). 
(ß) Whenever has a one-to-one O-preserving V-homomorphism S to D2, 

then i?(Dx) has a lattice embedding R(8) to R(D2), such that 
(y) R(S12<523) = R(ö12)R(ö2S) for all öM: Dl-^D2 and ¿23: D2^D3 satisfying 

the stipulations in (ß), and, 
(<5) if we denote by Con (R(S)) the mapping of Con (RiDJ) to Con (R(D2)) 

induced by R(S) (that is, the one, which maps &l£Con (R(DL)) to the congruence 
generated by {(aÄ(<5), W?(<5))eÄ(Z>2)2|(a, b ) ^ } ) , then the following diagram is 
commutative 

I'D, 

Con (R(Dj)) 

s 

Con(Rffl) 

1>DT 

Con (R(D2)) 
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In case of an affirmative answer the conjecture would follow. Indeed, for any 
distributive semilattice D, we can choose a directed set {D y} y 6 r of finite distributive 
subsemilattices approaching to D. By (y) and (<5), the Con (R(Dy))'s form the same 
directed set (up to commuting isomorphisms). Therefore; the direct limit of this 
set is D, too. On the other hand, the R(Dy)'s, too, form a directed set, and the 
semilattice of all finitely generated congruences of their direct limit is the direct 
limit of the Con (/?(£>y))'s. 

Pudlak carried out a modification of this program, namely, he proved the anal-
ogous statement for distributive lattices and 0-preserving lattice embeddings in the 
place of distributive semilattices and 0-preserving V-embeddings, and obtained 
a new proof of Schmidt's theorem. We are interested in the question how much 
of Pudlak's theorem can be proved without imposing the restriction that the 
embeddings be lattice embeddings. It will be shown that two finite distributive 
semilattices with 0 have a simultaneous representation (that is, a representation 
satisfying (a), (/?) and (<5)), provided one of them is a O-subsemilattice of the other. In 
Part II of this paper we shall derive Pudlak's theorem from this result as well as Bauer's 
result on the representability of countable semilattices. 

The main result of this part is the following 

T h e o r e m . Let Dy and D2 be finite distributive lattices, and let <5: d^d + 

be a one-to-one 0-preserving \/-homomorphism of into D2 • Then there exist 
lattices L1 and L2 such that 

(ax) Z) ;=Con (/.,), / = 1 , 2 (these isomorphisms will be denoted by ( p j , 
(fix) L1 can be embedded to L2 (by a one-to-one lattice isomorphism, to be 

denoted by ?.), 
(<50) every congruence of LyX can be extended to L2, and, therefore the mapping 

y: Con (Z.1)-»Con (L2), taking each 0 6 Con (Lx) to its smallest extension, that is, 
to the congruence generated by {(aA, bX)\(a, b)£0}, is also a one-to-one 0-preserving 
V-homomorphism, furthermore 

(Sj) for all d£Dh / = 1,2, <5 maps dx to d2 if and only if y maps d1cp1 to 
d2q>2. In other words, y represents S. 

1. P r o o f o f (aj). We define Lx (see E. T. SCHMIDT [5], pp. 82—87) as follows. 
Let be the Boolean lattice generated by D1. Let M1 consist of all triples 
(x,y,z)£B\ satisfying x/\y=x f\z=y/\z. Let L1 be the set of all triples in Mx 

also satisfying x£DL. Then Lx is a lattice, too, under the ordering of B\. It is 
proven in E. T. SCHMIDT [5] that D^Con (Li). For further purposes we shall 
recall the proof here. We need a description of the operations of Ll. The meet 
operation is the same as in B\. However, the joins in B\, Mx and Lx are different. 
They will be denoted by V, VM>VL5 respectively (or by V, VMl>Vx.t, where 
necessary). To describe them we introduce the following operators, (x, y, Z)K— 
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>->-(x, y, z) acts on B\ and maps (x, y, z) to the smallest element of Mx above 
(x, y, z). XI-+X acts on and maps x to the smallest element of Dx above x. 
Finally, (x, y, z)i-*(x, y, z)" acts on Mx and maps (x, y, z) to the smallest 
element of above (x, y, z). Now we have (see [5]), 

(x, y, z)\JM(x', / , z') = (xVx', yVy', z\J z')~, 

(x, y, z)VL(x', / , z') = (xVx', yVy', zVz')~~, 

(x, y, z)~ = (xV(jAz), jV(xAz) , z V ( x A j ) ) for (x, y, z)£B\, 

(x, y, z)~ = (x, j>V(xAz), zV(xAj>)) for (x, y, z)£M1. 

Now consider any congruence a of Lt. We shall prove that a is generated by 
a pair ((0,0,0), (x,0,0))€Z,*. (Then x£D1, and hence D1^Con(L1).) To prove 
this claim, let (x, y, z) a (x', y', z'). Then, forming the meets with (1,0, 0), (0, 1, 0) 
and (0, 0,1), respectively, we obtain 

(x, 0, 0) a (x', 0, 0), (0, y, 0) a (0, / , 0), .(0, 0, z) a (0, 0, z'). 

Hence (x, 0,0) Vl(0, 1,0)=(x, 1 , 0 ) " = (x, 1, x)"=(x, 1, x), and (x\ 0,0)VL(0,1,0)= 
= (x', l ,x ' ) , thus (x, 1, x) a (x', 1, x'). Forming the meet of both sides 

with (0, 0,1), we get (0, 0, x) a (0, 0, x'). Similarly, (0, 0, y) a (0, 0, / ) . Thus the 
congruence generated by ((x, y, z), (x', y', z')) contains the pairs 

((0, 0, x), (0, 0, x')), ((0, 0, y), (0, 0, /)), ((0, 0, z), (0, 0, z% 

It is also generated by them. Indeed, under the congruence generated by these three 
pairs the following pairs are also related: 

((x, 0, 0), (x', 0, 0)), ((0, y, 0), (0, 7', 0)), ((0, 0, z), (0, 0, z% 

(We have to compute as above.) Hence, computing modulo a, 

(x, y, z) = ((x, 0, 0)V(0, y, 0)V(0,0, z ) ) " = 

= (x, 0, 0)Vx(0, y, 0)VL(0, 0, z) = (x', 0, 0)VL(0, / , 0)VL(0, 0, z') = (x', y', z'). 

The elements of the form (0, 0, t) constitute a Boolean sublattice, thus the congruence 
generated by ((x, y, z), (x', y\ z')) is generated by an ideal of {(0, 0, 
Hence a is also generated by a pair ((0, 0, 0), (0, 0, tx)) or, equivalently, by 

((0, 0, 0), (0, 0, O)VL((0,1, 0), (0, 1, 0)) = ((0, 1, 0), (tx, 1, -Q), 
or by 

((0, 1, 0), (I., 1, U)A((1, 0, 0), (1, 0, 0)) = ((0, 0, 0), (tx, 0, 0)), 

as claimed. (For more details see [5].) Now consider the lattice of Figure 1. Let 
this lattice be denoted by L2. We show that £>2=Con (£2). First, however, let us 

t 

16 
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give a more accurate description of this lattice. For a finite distributive lattice D let 
M(D) (respectively, L{D)) denote the lattice formed from D analogously as Mx 

(respectively, Lx) is formed from Dx. Furthermore, whenever D is a distributive 
lattice, let B(D) denote the Boolean extension of D. 

1 

0 

Figure 1 

Finally, whene\er D,D' are distributive lattices, DQD', and the 0 and 1 
of D are the same as those of £>', then let M(D', D) consist of all triples (x, y, z)£ 
6 { D ' f satisfying x\J{yf\z)=y\J{xr\z)=z\J(x\y) and let L(D',D)= {(x, y, z)\x£D, 
(x, y, z)6M(£)', £»)}. Now the meaning of L(DX/D2), M(DX/D2), L(DX/D2,D2) 
and B(Dx/D^XD2 of Figure 1 is clear. For the definition of Dx/D2, see [3]. 

As to how they are glued together note that L(DX/D2) contains an ideal 
isomorphic with Dx/Dz (the set of elements (x, 0, 0), and M(DX/D2) 
contains such a dual ideal. The mapping which is identical on the Z>,'s maps the 
ideal of L(DX/D2) in question isomorphically to this dual ideal of M(DX/D2). 
Further isomorphism maps an ideal of L{DX/D2, D2) to another dual ideal of 
M{DX/D2). If we identify the elements corresponding to each other under these 
isomorphisms we get a partial lattice (the union of [0, u] and [0,«] on Figure 1). 
It can be made into a lattice by inserting a B(D1/D2)X.D2 to the top of the Figure, 
and making analogous identifications. (5(£)1/'Z>2)XD2 has an ideal isomorphic 
with B(DX/D2). This will be identified with the dual ideal of L(Dly/D2) consisting 
of all those elements which are greater than or equal to all elements used in the 
identification between L(DX/D2) and M(DX/D2). B(DX//D2)XD2 also has an 
ideal isomorphic with D2 , to be used for the identification with the corresponding 
dual ideal of L{DX/D2, D2).) We show that Z>2=Con (L2). Consider any two 
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elements of L2. The congruence generated by them is obviously a join of four 
congruences a,, i = 1 , 2 , 3 , 4 where ax (respectively, a 2 , a 3 , a 4 ) is generated by 
a pair of elements in L(D1/D2) (respectively, M(D1/D2), L{D1/D2, D2), 
B(D 1 yD 2 )XD i i ) . If we prove that all of these congruences are generated by sub-
intervals of [q, t] containing q, then we are done. Now the same calculations that 
proved that Con (L1)^D1 show that is generated by a subinterval of [p, J] 
containing p\ the same computations in M(DX/D2) and in L(D1/D2, Z)2) 
yield that ax is generated by a subinterval of [q, j] containing q as well as by 
a subinterval of [q, /] containing q. a2 can also be generated by elements of 
L ( p x / D £ ) which reduces the case of a2 to that of The case of a3 can be 
reduced to that of a2, and, finally, the case of ot4 follows from the cases of ax 

and a3. 

2. P r o o f of (ft). Preparing this proof it turned out that Theorem 1 of [3], which 
was intended to be used in the proof of (ft), is still not general enough. We have to 
prove a stronger result (Lemma 1). The proof of this result goes along the lines 
of [3], Theorem 1, for completeness' sake, however, we repeat part of the details. 

Let BiPx/Di) be the Boolean lattice generated by Dx/D2. Let B, be the 
Boolean lattice generated by D,-, / = 1,2. Denote by B\ the Boolean lattice gen-
erated by D\, where D\ denotes the lattice A U {1} with 1 for all x£Dx. 
Now we know from [3] that Dt/D2 is the lattice obtained from D\*D2 (the 
0—1 -free product) by factorizing by the congruence generated by all pairs (d\J d+, d+) 
ddDx- Now factorizing B\*B2 by this congruence we get a Boolean lattice generated 
by D^/Dz. This Boolean lattice will be denoted by B\/B2. Clearly B\/B2= 
=B(D1/'D2). It also contains Bx, the smallest Boolean lattice generated by Dx. 
This follows from [3], Theorem 1, for D\/D2 contains Dy. (Of course Bt, like 
£>!, does not contain the upper bound of B\/B2.) 

In Section 1 we defined the operator x>-+x mapping the Boolean algebra B(D) 
generated by the distributive lattice D to D by associating the least upper bound 
x in D with the element x£B. Now Bt is embedded to B\/B2. Therefore, 
for elements of there are two possibilities to define x ^ x , namely within 
Bx as the least upper bound of an element in Dx, and within B\/B2 as the least 
upper bound of an element in D 1 / D 2 . We are going to show (and this is the 
crucial point of the proof) that these two definitions coincide. 

This statement includes the main theorem of [3]. Indeed, from [3], Theorem 1 
it follows that the smallest Boolean lattice generated by Dx in B\/B2 intersects 
D x / D 2 in DX. (This is not evident, we have to use GRATZER [1], Corollary 10.9., 
or more exactly a slight generalization of this Corollary as the units of Z)x and D2 

do not coincide, however, it can be proved.) The converse is also true: [3], Theorem 1 
follows from the fact that the intersection of B(Dx) and Dl/D2 in B\/B2 is Dj . 

16* 
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(This is evident.) Now consider any element X of B(DX) in D1/D2. Then 
x formed in Dx/D2 is x. Now applying B(D1)f)(D1/'D2)=D2, that is, using 
[3], Theorem 1 we have that x formed in D« is x, too. This shows that the state-
ment whose proof we promised is, indeed stronger than [3], Theorem 1. Now let 
x be the least upper bound of x£Bx in Dl and let x be the least upper bound 
of x in D1/"D2. Obviously x = x. 

Lemma 1. For all x£Bx, x^x. 

Before proving Lemma 1, we have to solve the word problem of B1/D2, 
where Bx/D2 denotes the lattice generated by B1[JD2 in B\/B2. A solution 
will be given in the following lemma. 

Let 0 denote the congruence generated by the pairs (d+, d\/d+), d£Du in 
BX/D2. Let Qi denote the set of atoms of BX. Let J{k) be the subset {j\k ^ y'+} of 
Qx, if k is an irreducible of D2. (There is a homomorphism of Qx to Px correspond-
ing to the embedding DX-*BX. For any k, J(k) goes to an ideal of Px under this 
homomorphism; P, denotes the set of join-irreducibles of £>,, / = 1 ,2 ; 
j+ denotes j + . ) 

L e m m a 2. For arbitrary elements f , g^B1/D2, f=g (mod 0) i f f , for all k, 
f{k)=g{k) (mod 0 { J ( k f j ) where 0(J(k)) is the congruence generated by the ideal 
J{k). 

The proof is analogous with that of [3], Theorem 2, and it will be omitted. 
Now we go on to prove Lemma 1. We have to show x S x . As in [3], elements 

of Bx/D2 will be represented by antitone functions from P2 to Bx. It is enough 
to show that for all b£Bx,fbSf implies in Bx/D2 where fb (respectively, 
fB) is the function identically b (respectively, B) and f£Dx/D2. It suffices to show 
this statement for b irreducible, as the operation b^h preserves joins. 

Now let j be irreducible and assume that f j S f (mod 6). Then, for all k, 
j ^ f { k ) (mod Q(J{k))). Hence, we have either j ^ f ( k ) (and then also j ^ f ( k ) as 
f ( k ) is in A ) or j ~ j / \ f ( k ) (mod B(J{kj))j^f(k). In the latter case j/\f(k)=0, 
thus y = 0 (mod 0(J(kj)), that is, whence that is, ] = 0 
(mod 6{S(kj)). In either case ]rsf(k) (mod 8(J(k))), whence /,==/ (mod<9) 
completing the proof of Lemma 1. 

Now we return to the proof of (ft) and show that L(DX) is a sublattice of 
L(D1/D2). Consider the elements (x, y, z) of L(DX/D2) with x, y, z£Bx (hence 
x€Di, by [3], Theorem 1). These triples form a A-subsemilattice of L(DX/D2). 
But, because of Lemma 1, the join of two such triples is the same as their join in 
L(DX): 

(*, y> z)V t ( D 0(x' , /> O = (*Vx', y\Jy', z V z ' ) " ^ c . » 

(x, y, z)VWDi){x\ / , z') = (xVx', yVy', z V z y ' W S W 
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Now the operation does not depend upon, in which lattice the triple is con-
sidered, and Lemma 1 shows that the same is true for 

3. P r o o f of (<5„) and (¿i). (<50) is a consequence of (<5X), thus we need only 
prove (¿j). Let (¿1) says that d8(p2=dq>1y. Now, d(px is the congruence 
generated by ((0, 0, 0), (d, 0, 0)) in L^. A takes this pair to the interval [p,r\. Let 
these elements there be denoted by (0, 0, 0)[p r] and (d, 0, 0)[p r] (Figure 1). Then 
the congruence dcp̂ y is generated by this pair. With analogous notations, it is 
also generated by ((0,0, 0)[9>s], (0, 0, d\q s]). (L(D1/D2, D2) was defined such 
that the first component must be in D2. Therefore, when we glue it by a Dx/D2 

to the third (or second) component must denote the elements used in 
the gluing. That is [q,s] is the interval [(0,0,0), (0,0,1)] of L{D1/D2,D2). 
Omitting the subscript [q, .y], let us meet the pair ((0, 0,0), (0, 0, d)) with (0, 1, 0) 
and join the result with (1,0,0); so we get 

(0, 1, 0) = (3, 1, 3) (mod dcpiy), (0, 0, 0) = (3, 0, 0) (mod d^y), 

and both pairs generate d<pfl, where 3 denotes the least upper bound of ddD^ 
(QD1//D2) in D2(%Dl/D2). On the other hand, d5=d+, thus ddq>2 is generated 
by ((0,0,0), (d+,0,0)). We only have to prove 3=d+ in Dx/D2 for all d<LDx. 
Recall that 3 denotes the least upper bound of d in D2. It suffices to show that 
d^d2 (di^Di,i = 1,2) implies dx=d2. Besides, if we prove it for dx irreducible, 
then it is true for arbitrary d t . This follows from the fact that + preserves joins. 
Now assume that f d = f i r (mod©) that is, for all k£P2 

where f d i represents the element dx, that is, /dj takes the value dx identically 
and f d i is the characteristic function of d2: 

is congruent with fd(Jc) modulo &(J(k)). Now let us go out to B1/B2 and form 
the meet with 

d, = fdz (k) (mod 0(/(fc))), 

1 if k == d2, 
0 otherwise. 

Now dx V fd(Jc) = f t j j c ) means that for all k, the value of the function 

otherwise; 
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then we obtain that for all k^d2, k£P2, 

d1 = 0 (mod 0 (/(*))), 

that is, dxtSQc), in other words k£d+. Thus {k\k£P2, k^d+}Q{k\k€P2, k^d2). 
Hence d l ^ d 2 , as claimed. 
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