52 research outputs found

    A study on associations of smartphone dependence tendency with boredom and interpersonal relationships among university students

    Get PDF
    スマートフォンが普及し,問題が増加しているにもかかわらず,未だスマートフォン依存に限定して心理社会的要因を探求した研究は少ない。そこで本研究では,インターネット依存傾向形成要因に関する知見を手がかりに,スマートフォン依存傾向の構成要素と退屈感および対人関係の関連について検討した。大学生・大学院生342名を対象に,質問紙調査を行った。退屈感,対人関係要因を独立変数,スマートフォン依存傾向構成要因を媒介変数,日常生活への影響を従属変数として,共分散構造分析を行った。その結果,退屈感および対人関係を背景要因に,「スマートフォンの効用認知」「仮想的空間志向」といったメリット感を入り口とし,「高揚感」から,コントロール困難な状況,「日常生活への影響」と順に実害に至るプロセスが示された。これらの心理社会的要因を理解したうえで,スマートフォン依存予防対策を検討することが必要だと考えられた

    Embedded DRAM using c-axis-aligned crystalline In-Ga-Zn oxide FET with 1.8V-power-supply voltage

    Get PDF
    An embedded memory using c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) FETs with an extremely low off-state current on the order of yoctoamperes (yA) (yocto- is a metric prefix denoting a factor of 10-24) is known as a potential next-generation memory [1][2]. A dynamic oxide semiconductor RAM (DOSRAM), where each memory cell is composed of one CAAC-IGZO FET and one capacitor, enables long data retention and long interval of refresh operations with an advantage of extremely low off-state current of the CAAC-IGZO FET. However, negative backgate voltage (Vbg) and word-line driving voltages of 0/3.3 V (VSSL/VDDH) had been required for an access transistor of the memory cell to satisfy high on-state current and low off-state current. This work shows that DOSRAM operates with 1.8 V-power supply voltage by using a novel driving method. Figure 1 shows Vg-Id performance of a CAAC-IGZO FET used as a cell transistor. The threshold voltage (Vth) of the CAAC-IGZO FET is controlled by changing a level of Vbg, whereas Vth of the Si FET is controlled by channel doping. Figure 2 shows a block diagram of a prototyped DOSRAM. The refresh rate in DOSRAM mainly depends on the leakage current of cell transistors. To reduce the refresh rate to once an hour, the off-state current of the cell transistors on a non-selected word line needs to be reduced to 200 zeptoamperes (zA) per FET (zepto- is a metric prefix denoting a factor of 10-21) or lower at 85C. The required Vbg is -7.0 V to achieve such an off-state current at Vg 0 V, for example. To obtain approx. 100 MHz-driving frequency, the required on-state current is at least several microamperes. The voltage level difference in the word line, VDDH VSSL, is a factor that determines the on-state current, and in this work is fixed to 3.3 V so that the combination of Vbg and the word line voltage is optimized. The application of negative voltage to the word line enables the leakage current of the cell transistor to be maintained low even when Vbg is increased. For example, whereas the existing driving method meets the above off-state current value with Vbg -7.0 V and the VSSL 0 V, the novel driving method meets the value with Vbg 0 V and VSSL -1.5 V. In the novel driving method, VDDH 1.8 V. There has been a report of a reduction in leakage current of a memory cell by application of negative voltage to a top gate in DRAM using Si CMOS [3]. In contrast to it, DOSRAM including CAAC-IGZO FETs with L 60 nm has a leakage current of 200 zA or lower, which is 7-digit lower than that of the DRAM using Si CMOS, and enables longer data retention. The evaluation results of the prototyped DOSRAM verify that a reduction in power-supply voltage from 3.3 V to 1.8 V is possible in terms of operation and data retention. This suggests a highly compatible and efficient configuration of an embedded DRAM and a logic circuit where signals can be transmitted with low VDD. References [1] S. H. Wu, et al., IEEE Symp. VLSI Tech., pp. 166-167, 2017. [2] T. Ishizu, et al., IEEE Symp. VLSI Cir., pp. 162-163, 2017. [3] F. Hamzaoglu et al., IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 150-157, Jan. 2015

    Best Thermoelectric Efficiency of Ever-Explored Materials

    Full text link
    A thermoelectric device is a heat engine that directly converts heat into electricity. Many materials with a high figure of merit ZT have been discovered in anticipation of a high thermoelectric efficiency. However, there has been a lack of investigations on efficiency-based material evaluation, and little is known about the achievable limit of thermoelectric efficiency. Here, we report the highest thermoelectric efficiency using 13,353 published materials. The thermoelectric device efficiencies of 808,610 configurations are calculated under various heat-source temperatures (T_h) when the cold-side temperature is 300 K, solving one-dimensional thermoelectric integral equations with temperature-dependent thermoelectric properties. For infinite-cascade devices, a thermoelectric efficiency larger than 33% (~1/3) is achievable when T_h exceeds 1400 K. For single-stage devices, the best efficiency of 17.1% (~1/6) is possible when T_h is 860 K. Leg segmentation can overcome this limit, delivering a very high efficiency of 24% (~1/4) when T_h is 1100 K.Comment: 32 pages (main+table+figure captions+figures), 7 additional pages for 6 high resolution figures, Supporting Data file is not public ye

    Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis

    Get PDF
    Background: Circadian rhythms modulate growth and development in all organisms through interlocking transcriptional-translational feedback loops. The transcriptional loop involves chromatin modifications of central circadian oscillators in mammals and plants. However, the molecular basis for rhythmic epigenetic modifications and circadian regulation is poorly understood. Results: Here we report a feedback relationship between diurnal regulation of circadian clock genes and histone modifications in Arabidopsis. On one hand, the circadian oscillators CCA1 and LHY regulate diurnal expression of genes coding for the eraser (JMJ14) directly and writer (SDG2) indirectly for H3K4me3 modification, leading to rhythmic H3K4me3 changes in target genes. On the other hand, expression of circadian oscillator genes including CCA1 and LHY is associated with H3K4me3 levels and decreased in the sdg2 mutant but increased in the jmj14 mutant. At the genome-wide level, diurnal rhythms of H3K4me3 and another histone mark H3K9ac are associated with diurnal regulation of 20-30% of the expressed genes. While the majority (86%) of H3K4me3 and H3K9ac target genes overlap, only 13% of morning-phased and 22% of evening-phased genes had both H3K4me3 and H3K9ac peaks, suggesting specific roles of different histone modifications in diurnal gene expression. Conclusions: Circadian clock genes promote diurnal regulation of SDG2 and JMJ14 expression, which in turn regulate rhythmic histone modification dynamics for the clock and its output genes. This reciprocal regulatory module between chromatin modifiers and circadian clock oscillators orchestrates diurnal gene expression that governs plant growth and development

    Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement

    Get PDF
    Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement

    Primitive templated catalysis of a peptide ligation by self-folding RNAs

    Get PDF
    RNA–polypeptide complexes (RNPs), which play various roles in extant biological systems, have been suggested to have been important in the early stages of the molecular evolution of life. At a certain developmental stage of ancient RNPs, their RNA and polypeptide components have been proposed to evolve in a reciprocal manner to establish highly elaborate structures and functions. We have constructed a simple model system, from which a cooperative evolution system of RNA and polypeptide components could be developed. Based on the observation that several RNAs modestly accelerated the chemical ligation of the two basic peptides. We have designed an RNA molecule possessing two peptide binding sites that capture the two peptides. This designed RNA can also accelerate the peptide ligation. The resulting ligated peptide, which has two RNA-binding sites, can in turn function as a trans-acting factor that enhances the endonuclease activity catalyzed by the designed RNA

    Coulomb breakup reactions of 93,94 Zr in inverse kinematics

    Get PDF
    Coulomb breakup reactions of 93,94 Zr have been studied in inverse kinematics at incident beam energies of about 200 MeV/nucleon in order to evaluate neutron capture reaction methods. The 93 Zr(n,γ) 94 Zr reaction is particularly important as a candidate nuclear transmutation reaction for the long-lived fission product 93 Zr in nuclear power plants. One- and two-neutron removal cross sections on Pb and C targets were measured to deduce the inclusive Coulomb breakup cross sections, 375 ± 29 (stat.) ± 30 (syst.) and 403 ± 26 (stat.) ± 31 (syst.) mb for 93 Zr and 94 Zr, respectively. The results are compared with estimates using the standard Lorentzian model and microscopic calculations. The results reveal a possible contribution of the pygmy dipole resonance or giant quadrupole resonance in the Coulomb breakup reactions of 94 Zr

    Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137

    Full text link
    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes

    Primary neuroendocrine neoplasm of the esophagus – Report of 14 cases from a single institute and review of the literature

    Full text link

    Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer

    Get PDF
    The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease
    corecore