238 research outputs found
Gate control of low-temperature spin dynamics in two-dimensional hole systems
We have investigated spin and carrier dynamics of resident holes in
high-mobility two-dimensional hole systems in GaAs/AlGaAs
single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and
Kerr rotation, as well as time-resolved photoluminescence spectroscopy are
utilized in our study. We observe long-lived hole spin dynamics that are
strongly temperature dependent, indicating that in-plane localization is
crucial for hole spin coherence. By applying a gate voltage, we are able to
tune the observed hole g factor by more than 50 percent. Calculations of the
hole g tensor as a function of the applied bias show excellent agreement with
our experimental findings.Comment: 8 pages, 7 figure
Characterisation of age and polarity at onset in bipolar disorder
BACKGROUND Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. AIMS To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. METHOD Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. RESULTS Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = -0.34 years, s.e. = 0.08), major depression (β = -0.34 years, s.e. = 0.08), schizophrenia (β = -0.39 years, s.e. = 0.08), and educational attainment (β = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. CONCLUSIONS AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses
The genetic basis of major depression
Major depressive disorder (MDD) is a common, debilitating, phenotypically heterogeneous disorder with heritability ranges from 30% to 50%. Compared to other psychiatric disorders, its high prevalence, moderate heritability, and strong polygenicity have posed major challenges for gene-mapping in MDD. Studies of common genetic variation in MDD, driven by large international collaborations such as the Psychiatric Genomics Consortium, have confirmed the highly polygenic nature of the disorder and implicated over 100 genetic risk loci to date. Rare copy number variants associated with MDD risk were also recently identified. The goal of this review is to present a broad picture of our current understanding of the epidemiology, genetic epidemiology, molecular genetics, and gene–environment interplay in MDD. Insights into the impact of genetic factors on the aetiology of this complex disorder hold great promise for improving clinical care
A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein
scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot
(BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport
of BRP and RBP using intravital live imaging, with both proteins co-
accumulating in axonal aggregates of several transport mutants. RBP, via its
C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport
adaptor involved in kinesin-dependent SV transport. We show in atomic detail
that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of
Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif
provoked formation of ectopic AZ-like structures at axonal membranes. Direct
interactions between AZ proteins and transport adaptors seem to provide
complex avidity and shield synaptic interaction surfaces of pre-assembled
scaffold protein transport complexes, thus, favouring physiological synaptic
AZ assembly over premature assembly at axonal membranes. - See more at:
http://elifesciences.org/content/4/e06935#sthash.oVGZ8cdi.dpu
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells
<div><h3>Background</h3><p>Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however.</p> <h3>Methods</h3><p>Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the <em>in vitro</em> Caco-2 cell monolayer model system and <em>in situ</em> intestinal perfusion and <em>in vivo</em> pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols.</p> <h3>Conclusion</h3><p>After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells.</p> </div
Minimal phenotyping yields genome-wide association signals of low specificity for major depression
Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for disease case identification, increasingly used in genome-wide association studies (GWAS). Here we report differences in genetic architecture between depression defined by minimal phenotyping and strictly defined major depressive disorder (MDD): the former has a lower genotype-derived heritability that cannot be explained by inclusion of milder cases and a higher proportion of the genome contributing to this shared genetic liability with other conditions than for strictly defined MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not specific to MDD, and, although it generates highly predictive polygenic risk scores, the predictive power can be explained entirely by large sample sizes rather than by specificity for MDD. Our results show that reliance on results from minimal phenotyping may bias views of the genetic architecture of MDD and impede the ability to identify pathways specific to MDD. Genetic analyses of depression based on minimal phenotyping identify nonspecific genetic risk factors shared between major depressive disorder (MDD) and other psychiatric conditions, suggesting that this approach may have limited ability to identify pathways specific to MDD
- …