22 research outputs found

    Psychophysiological effects of a web-based stress management system: A prospective, randomized controlled intervention study of IT and media workers [ISRCTN54254861]

    Get PDF
    BACKGROUND: The aim of the present study was to assess possible effects on mental and physical well-being and stress-related biological markers of a web-based health promotion tool. METHODS: A randomized, prospectively controlled study was conducted with before and after measurements, involving 303 employees (187 men and 116 women, age 23–64) from four information technology and two media companies. Half of the participants were offered web-based health promotion and stress management training (intervention) lasting for six months. All other participants constituted the reference group. Different biological markers were measured to detect possible physiological changes. RESULTS: After six months the intervention group had improved statistically significantly compared to the reference group on ratings of ability to manage stress, sleep quality, mental energy, concentration ability and social support. The anabolic hormone dehydroepiandosterone sulphate (DHEA-S) decreased significantly in the reference group as compared to unchanged levels in the intervention group. Neuropeptide Y (NPY) increased significantly in the intervention group compared to the reference group. Chromogranin A (CgA) decreased significantly in the intervention group as compared to the reference group. Tumour necrosis factor α (TNFα) decreased significantly in the reference group compared to the intervention group. Logistic regression analysis revealed that group (intervention vs. reference) remained a significant factor in five out of nine predictive models. CONCLUSION: The results indicate that an automatic web-based system might have short-term beneficial physiological and psychological effects and thus might be an opportunity in counteracting some clinically relevant and common stress and health issues of today

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates

    No full text
    PURPOSE: Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day.METHOD: In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m(3)) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure.RESULTS: No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms.CONCLUSION: Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust)

    Realistic indoor nano-aerosols for a human exposure facility

    No full text
    The aim of this study was to achieve realistic levels of two different types of aerosols commonly abundant in indoor environments in an experimental chamber intended for human exposure studies and aerosol characterization. The aerosols chosen were particles from candle lights (in particle number dominated by inorganic water soluble particles) and from ozone-terpene reactions (organic particles). The aerosol generation and characterization system consisted of a controlled air tight stainless steel 22 m(3) chamber, to which the generation set-ups were connected. No air could enter or leave the chamber except through a conditioning system by which temperature, relative humidity and air exchange rate could be controlled. Candle smoke aerosol was generated from ten candles burning in a 1.33 m(3) glass and stainless steel chamber. The aerosol was diluted by clean air from the conditioning system before entering the chamber. Terpene vapor was generated by passing pure nitrogen through a glass bottle containing limonene oil. Ozone was generated by a spark discharge using pure O-2, and was added to the ventilation air flow downstream the inlet for terpene vapors and upstream the inlet to the chamber. Both aerosols were characterized with respect to number and mass concentrations, size distribution and chemical composition. Particle number concentration in the size range 10-650 nm could be varied from <10 cm(-3) to more than 900,000 cm(-3) (for candle smoke) or to more than 30,000 cm(-3) (for particles formed in a 160 ppb terpene/40 ppb ozone mixture). Furthermore, the set-ups were evaluated by, for each source, repeating the generation at six three-hour long events. For both aerosols repeatable generations at pre-determined concentration levels, that were stable over time, could be achieved. The results show that realistic concentrations of aerosols from real-world environments could be reproduced in a well-controlled manner and that this set-up could be used both for aerosol characterization and for human exposures. (C) 2013 Elsevier Ltd. All rights reserved
    corecore