1,225 research outputs found

    Multi-fluid cosmology: An illustration of fundamental principles

    Full text link
    Our current understanding of the Universe depends on the interplay of several distinct "matter" components, which interact mainly through gravity, and electromagnetic radiation. The nature of the different components, and possible interactions, tends to be based on the notion of coupled perfect fluids (or scalar fields). This approach is somewhat naive, especially if one wants to be able to consider issues involving heat flow, dissipative mechanisms, or Bose-Einstein condensation of dark matter. We argue that a more natural starting point would be the multi-purpose variational relativistic multi-fluid system that has so far mainly been applied to neutron star astrophysics. As an illustration of the fundamental principles involved, we develop the formalism for determining the non-linear cosmological solutions to the Einstein equations for a general relativistic two-fluid model for a coupled system of matter (non-zero rest mass) and "radiation" (zero rest mass). The two fluids are allowed to interpenetrate and exhibit a relative flow with respect to each other, implying, in general, an anisotropic Universe. We use initial conditions such that the massless fluid flux dominates early on so that the situation is effectively that of a single fluid and one has the usual Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. We find that there is a Bianchi I transition epoch out of which the matter flux dominates. The situation is then effectively that of a single fluid and the spacetime evolves towards the FLRW form. Such a transition opens up the possibility of imprinting observable consequences at the specific scale corresponding to the transition time.Comment: 12 pages, 6 figures, version taking account of referee remark

    Forward-Backward Correlations and Event Shapes as probes of Minimum-Bias Event Properties

    Full text link
    Measurements of inclusive observables, such as particle multiplicities and momentum spectra, have already delivered important information on soft-inclusive ("minimum-bias") physics at the Large Hadron Collider. In order to gain a more complete understanding, however, it is necessary to include also observables that probe the structure of the studied events. We argue that forward-backward (FB) correlations and event-shape observables may be particulary useful first steps in this respect. We study the sensitivity of several different types of FB correlations and two event shape variables - transverse thrust and transverse thrust minor - to various sources of theoretical uncertainty: multiple parton interactions, parton showers, colour (re)connections, and hadronization. The power of each observable to furnish constraints on Monte Carlo models is illustrated by including comparisons between several recent, and qualitatively different, PYTHIA 6 tunes, for pp collisions at sqrt(s) = 900 GeV.Comment: 13 page

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds – Volc Affects S Aerosol in UT and Cirrus

    Get PDF
    The influence of downwelling stratospheric sulfurous aerosol on the UT (upper troposphere) aerosol concentrations and on cirrus clouds is investigated using CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container observations) (between 1999–2002 and 2005–2013) and the cirrus reflectance product from Moderate Resolution Imaging Spectroradiometer (MODIS). The initial period, 1999–2002, was volcanically quiescent after which the sulfurous aerosol in the LMS (lowermost stratosphere) (SLMS_{LMS}) became enhanced by several volcanic eruptions starting 2005. From 2005 to 2008 and in 2013, volcanic aerosol from several tropical eruptions increased SLMS_{LMS}. Due to consequent subsidence, the sulfur loading of the upper troposphere (SUT_{UT}) was increased by a factor of 2.5 compared to background levels. Comparison of SLMS and SUT_{UT} during the seasons March–July and August–November shows a close coupling of the UT and LMS. Finally, the relationship between SLMS_{LMS} and the cirrus cloud reflectance (CR) retrieved from MODIS spectrometer (on board the satellites Terra and Aqua) is studied. SLMS_{LMS} and CR show a strong anticorrelation, with a factor of 3.5 increase in SLMS and decrease of CR by 8 ± 2% over the period 2001–2011. We propose that the increase of SLMS_{LMS} due to volcanism has caused the coinciding cirrus CR decrease, which would be associated with a negative radiative forcing in the Northern Hemisphere midlatitudes

    Open Charm Production in an Equilibrating Parton Plasma

    Full text link
    Open charm production during the equilibration of a gluon dominated parton plasma is calculated, with both the time-dependent temperature and parton densities given by a set of rate equations. Including pre-thermal production, the total enhancement of open charm production over the initial gluon fusion depends sensitively on the initial parton density and the effective temperature. The dependence of the pre-thermal charm production on the space-momentum correlation in the initial parton phase-space distribution is also discussed.Comment: 23 pages REVTEX, 7 uuencoded postscript figures include

    Effects of oral glucose-lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention - a retrospective nationwide cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimum oral pharmacological treatment of diabetes mellitus to reduce cardiovascular disease and mortality following myocardial infarction has not been established. We therefore set out to investigate the association between individual oral glucose-lowering drugs and cardiovascular outcomes following myocardial infarction in patients with diabetes mellitus not treated with emergent percutaneous coronary intervention.</p> <p>Materials and methods</p> <p>All patients aged 30 years or older receiving glucose-lowering drugs (GLDs) and admitted with myocardial infarction (MI) not treated with emergent percutaneous coronary intervention in Denmark during 1997-2006 were identified by individual-level linkage of nationwide registries of hospitalizations and drug dispensing from pharmacies. Multivariable Cox regression models adjusted for age, sex, calendar year, comorbidity, and concomitant pharmacotherapy were used to assess differences in the composite endpoint of non-fatal MI and cardiovascular mortality between individual GLDs, using metformin monotherapy as reference.</p> <p>Results</p> <p>The study comprised 9876 users of GLDs admitted with MI. The mean age was 72.3 years and 56.5% of patients were men. A total of 3649 received sulfonylureas and 711 received metformin at admission. The average length of follow-up was 2.2 (SD 2.6) years. A total of 6,171 patients experienced the composite study endpoint. The sulfonylureas glibenclamide, glimepiride, glipizide, and tolbutamide were associated with increased risk of cardiovascular mortality and/or nonfatal MI with hazard ratios [HRs] of 1.31 (95% confidence interval [CI] 1.17-1.46), 1.19 (1.06-1.32), 1.25 (1.11-1.42), and 1.18 (1.03-1.34), respectively, compared with metformin. Gliclazide was the only sulfonylurea not associated with increased risk compared with metformin (HR 1.03 [0.88-1.22]).</p> <p>Conclusions</p> <p>In patients with diabetes mellitus admitted with MI not treated with emergent percutaneous coronary intervention, monotherapy treatment with the sulfonylureas glibenclamide, glimepiride, glipizide, and tolbutamide was associated with increased cardiovascular risk compared with metformin monotherapy.</p
    corecore