706 research outputs found

    Analytical Solution of the Off-Equilibrium Dynamics of a Long Range Spin-Glass Model

    Full text link
    We study the non-equilibrium relaxation of the spherical spin-glass model with p-spin interactions in the N→∞N \rightarrow \infty limit. We analytically solve the asymptotics of the magnetization and the correlation and response functions for long but finite times. Even in the thermodynamic limit the system exhibits `weak' (as well as `true') ergodicity breaking and aging effects. We determine a functional Parisi-like order parameter Pd(q)P_d(q) which plays a similar role for the dynamics to that played by the usual function for the statics.Comment: 8 pages, Roma preprin

    Commensal transient searches in eight short gamma-ray burst fields

    Get PDF
    A new generation of radio telescopes with excellent sensitivity, instantaneous uv coverage, and large fields of view, are providing unprecedented opportunities for performing commensal transient searches. Here, we present such a commensal search in deep observations of short gamma-ray burst fields carried out with the MeerKAT radio telescope in South Africa at 1.3 GHz. These four hour observations of eight different fields span survey lengths of weeks to months. We also carry out transient searches in time slices of the full observations, at time-scales of 15 min and 8 s. We find 122 variable sources on the long time-scales, of which 52 are likely active galactic nuclei, but there are likely also some radio flaring stars. While the variability is intrinsic in at least two cases, most of it is consistent with interstellar scintillation. In this study, we also place constraints on transient rates based on state-of-the-art transient simulations codes. We place an upper limit of 2 × 10-4 transients per day per square degree for transients with peak flux of 5 mJy, and an upper limit of 2.5 × 10-2 transients per day per square degree for transients with a fluence of 10 Jy ms, the minimum detectable fluence of our survey

    Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    Get PDF
    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms, especially those building structures made of CaCO3. A large proportion of benthic marine calcifiers incorporate Mg2+ into their calcareous structures (i.e., Mg-calcite) which, in general, reduces mineral stability. The vulnerability of some marine calcifiers to ocean acidification is related to the solubility of their calcareous structures, but not all marine organisms conform to this because of sophisticated biological and physiological mechanisms to construct and maintain CaCO3 structures. Few studies have considered seawater saturation state with respect to species-specific mineralogy in evaluating the effect of ocean acidification on marine organisms. Here, a global dataset of skeletal mol % MgCO3 of benthic calcifiers and in situ environmental conditions (temperature, salinity, pressure, and [CO32-]) spanning a depth range of 0 m (subtidal/neritic) to 5500 m (abyssal) was assembled to calculate in situ seawater saturation states with respect to species-specific Mg-calcite mineral compositions (?Mg-x). Up to 20% of all studied calcifiers at depths 1200 m currently experience seawater mineral undersaturation with respect to their skeletal mineral phase (?Mg-x1200 m) of all studied calcifying species to seawater undersaturation. These observations underscore concerns over the ability of marine benthic calcifiers to continue to construct and maintain their calcareous structures under these conditions. We advocate that ocean acidification tipping points can only be understood by assessing species-specific responses, and because of different seawater ?Mg-x present in all marine ecosystems

    Consistent perturbations in an imperfect fluid

    Full text link
    We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.Comment: 40 pages plus appendices. v2 reflects version accepted for publication in JCAP (new summary of notation, extra commentary on choice of gauge and frame, extra references to literature

    Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response

    Get PDF
    Bartonella henselae causes vasculoproliferative disorders in humans. We identified a nonfimbrial adhesin of B. henselae designated as Bartonella adhesin A (BadA). BadA is a 340-kD outer membrane protein encoded by the 9.3-kb badA gene. It has a modular structure and contains domains homologous to the Yersinia enterocolitica nonfimbrial adhesin (Yersinia adhesin A). Expression of BadA was restored in a BadA-deficient transposon mutant by complementation in trans. BadA mediates the binding of B. henselae to extracellular matrix proteins and to endothelial cells, possibly via β1 integrins, but prevents phagocytosis. Expression of BadA is crucial for activation of hypoxia-inducible factor 1 in host cells by B. henselae and secretion of proangiogenic cytokines (e.g., vascular endothelial growth factor). BadA is immunodominant in B. henselae–infected patients and rodents, indicating that it is expressed during Bartonella infections. Our results suggest that BadA, the largest characterized bacterial protein thus far, is a major pathogenicity factor of B. henselae with a potential role in the induction of vasculoproliferative disorders

    In vitro profiling of the endocrine-disrupting potency of brominated flame retardants

    Get PDF
    Over the last years, increasing evidence has become available that some brominated flame retardants (BFRs) may have endocrine disrupting (ED) potencies. The goal of the current study was to perform a systematic in vitro screening of the ED potencies of BFRs (1) to elucidate possible modes of action of BFRs in man and wildlife, and (2) to classify BFRs with similar profiles of ED potencies. A test set of twenty-seven individual BFRs was selected, consisting of nineteen polybrominated diphenylethers (PBDE) congeners, tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), 2,4,6-tribromophenol (246-TBP), ortho-hydroxylated BDE-47 (6OH-BDE-47), and TBBPA-bis(2,3)dibromopropylether (TBBPA-DBPE). All BFRs were tested for their potency to interact with the arylhydrocarbon receptor (AhR), androgen receptor (AR), progesterone receptor (PR), and estrogen receptor (ER). In addition, all BFRs were tested for their potency to inhibit estradiol (E2) sulfation by E2-sulfotransferase (E2SULT), to interfere with thyroid hormone 3,3`,5-triiodothyronine (T3) mediated cell proliferation, and to compete with T3-precursor thyroxine (T4) for binding to the plasma transport protein transthyretin (TTR). The results of the in vitro screening indicated that BFRs have ED potencies, some of which had not or only marginally been described before (AR-antagonism, PR-antagonism, E2SULT inhibition, and potentiation of T3-mediated effects). For some BFRs, the potency to induce AR-antagonism, E2SULT inhibition and TTR competition was higher than for natural ligands or clinical drugs used as positive controls. Based on their similarity in ED profiles, BFRs were classified into five different clusters. These findings support further investigation of the potential endocrine disrupting effects of these environmentally relevant BFRs in man and wildlife

    Chaotic, memory and cooling rate effects in spin glasses: Is the Edwards-Anderson model a good spin glass?

    Get PDF
    We investigate chaotic, memory and cooling rate effects in the three dimensional Edwards-Anderson model by doing thermoremanent (TRM) and AC susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of re-initialization processes in temperature change experiments (TRM or AC). A detailed comparison with AC relaxation experiments in the presence of DC magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.Comment: 17 pages, 10 figures. The original version of the paper has been split in two parts. The second part is now available as cond-mat/010224
    • …
    corecore