4,004 research outputs found

    Compressibility of titanosilicate melts

    Get PDF
    The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility

    Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    Get PDF
    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets

    Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice

    Full text link
    The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. Using cold atomic gases, various condensed matter models can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the cuprates. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in the bulk include the observation of fermion pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported, but have not yet addressed superfluid behavior. Here we show that when a condensate of fermionic atom pairs was released from an optical lattice, distinct interference peaks appear, implying long range order, a property of a superfluid. Conceptually, this implies that strong s-wave pairing and superfluidity have now been established in a lattice potential, where the transport of atoms occurs by quantum mechanical tunneling and not by simple propagation. These observations were made for unitarity limited interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly due to a superfluid to insulator transition. Such strongly interacting fermions in an optical lattice can be used to study a new class of Hamiltonians with interband and atom-molecule couplings.Comment: accepted for publication in Natur

    Fermionic response from fractionalization in an insulating two-dimensional magnet

    Get PDF
    Conventionally ordered magnets possess bosonic elementary excitations, called magnons. By contrast, no magnetic insulators in more than one dimension are known whose excitations are not bosons but fermions. Theoretically, some quantum spin liquids (QSLs) -- new topological phases which can occur when quantum fluctuations preclude an ordered state -- are known to exhibit Majorana fermions as quasiparticles arising from fractionalization of spins. Alas, despite much searching, their experimental observation remains elusive. Here, we show that fermionic excitations are remarkably directly evident in experimental Raman scattering data across a broad energy and temperature range in the two-dimensional material α\alpha-RuCl3_3. This shows the importance of magnetic materials as hosts of Majorana fermions. In turn, this first systematic evaluation of the dynamics of a QSL at finite temperature emphasizes the role of excited states for detecting such exotic properties associated with otherwise hard-to-identify topological QSLs.Comment: 5 pages, 3 figure

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models

    Get PDF
    International audienceWe present a dual-view mixture model to cluster users based on their features and latent behavioral functions. Every component of the mixture model represents a probability density over a feature view for observed user attributes and a behavior view for latent behavioral functions that are indirectly observed through user actions or behaviors. Our task is to infer the groups of users as well as their latent behavioral functions. We also propose a non-parametric version based on a Dirichlet Process to automatically infer the number of clusters. We test the properties and performance of the model on a synthetic dataset that represents the participation of users in the threads of an online forum. Experiments show that dual-view models outperform single-view ones when one of the views lacks information

    Reproducibility of the airway response to an exercise protocol standardized for intensity, duration, and inspired air conditions, in subjects with symptoms suggestive of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise testing to aid diagnosis of exercise-induced bronchoconstriction (EIB) is commonly performed. Reproducibility of the airway response to a standardized exercise protocol has not been reported in subjects being evaluated with mild symptoms suggestive of asthma but without a definite diagnosis. This study examined reproducibility of % fall in FEV<sub>1 </sub>and area under the FEV<sub>1 </sub>time curve for 30 minutes in response to two exercise tests performed with the same intensity and duration of exercise, and inspired air conditions.</p> <p>Methods</p> <p>Subjects with mild symptoms of asthma exercised twice within approximately 4 days by running for 8 minutes on a motorized treadmill breathing dry air at an intensity to induce a heart rate between 80-90% predicted maximum; reproducibility of the airway response was expressed as the 95% probability interval.</p> <p>Results</p> <p>Of 373 subjects challenged twice 161 were positive (≄10% fall FEV<sub>1 </sub>on at least one challenge). The EIB was mild and 77% of subjects had <15% fall on both challenges. Agreement between results was 76.1% with 56.8% (212) negative (< 10% fall FEV<sub>1</sub>) and 19.3% (72) positive on both challenges. The remaining 23.9% of subjects had only one positive test. The 95% probability interval for reproducibility of the % fall in FEV<sub>1 </sub>and AUC<sub>0-30 </sub>min was ± 9.7% and ± 251% for all 278 adults and ± 13.4% and ± 279% for all 95 children. The 95% probability interval for reproducibility of % fall in FEV<sub>1 </sub>and AUC<sub>0-30 min </sub>for the 72 subjects with two tests ≄10% fall FEV<sub>1 </sub>was ± 14.6% and ± 373% and for the 34 subjects with two tests ≄15% fall FEV<sub>1 </sub>it was ± 12.2% and ± 411%. Heart rate and estimated ventilation achieved were not significantly different either on the two test days or when one test result was positive and one was negative.</p> <p>Conclusions</p> <p>Under standardized, well controlled conditions for exercise challenge, the majority of subjects with mild symptoms of asthma demonstrated agreement in test results. Performing two tests may need to be considered when using exercise to exclude or diagnose EIB, when prescribing prophylactic treatment to prevent EIB and when designing protocols for clinical trials.</p

    International journalism and the emergence of transnational publics: between cosmopolitan norms, the affirmation of identity and market forces

    Get PDF
    Much has been written about transnational public spheres, though our understanding of their shape and nature remains limited. Drawing on three alternative conceptions of newswork as public communication, this article explores the role of international journalists in shaping transnational publics. Based on a series of original interviews, it asks how journalists are oriented in their newswork (e.g. are they cosmopolitan or parochial in their orientation) and how they ‘imagine’ the public. It finds that interviewees imagine a polycentric transnational public and variously frame their work as giving voice to those affected by an issue (imagining the public as a cosmopolitan community of fate), performing and reaffirming a particular kind of identity and belonging (imagining the public as a nation) or pursuing audiences wherever they may be (imagining the public as the de facto audience)
    • 

    corecore