1,648 research outputs found

    Plastic Curtain Wall Use for Barn Venting

    Get PDF
    Barn ventilation systems using gravity (natural) airflow that enters through wall openings and goes out top ridge vents have been used a long time in swine, dairy, beef, and poultry barns (Figure 1). A comparatively new development is to use a plastic curtain, adjustable up and down, for the full height and length of each wall, particularly in dairy barns. This ventilation system is being adapted in northern states after many years use in poultry barns in the southeastern United States

    Autonomous agile teams: Challenges and future directions for research

    Get PDF
    According to the principles articulated in the agile manifesto, motivated and empowered software developers relying on technical excellence and simple designs, create business value by delivering working software to users at regular short intervals. These principles have spawned many practices. At the core of these practices is the idea of autonomous, self-managing, or self-organizing teams whose members work at a pace that sustains their creativity and productivity. This article summarizes the main challenges faced when implementing autonomous teams and the topics and research questions that future research should address

    Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients

    Full text link
    We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal

    A systematic study of J/psi suppression in cold nuclear matter

    Get PDF
    Based on a Glauber model, a statistical analysis of all mid-rapidity J/psi hadroproduction and leptoproduction data on nuclear targets is carried out. This allows us to determine the J/psi-nucleon inelastic cross section, whose knowledge is crucial to interpret the J/psi suppression observed in heavy-ion collisions, at SPS and at RHIC. The values of sigma are extracted from each experiment. A clear tension between the different data sets is reported. The global fit of all data gives sigma=3.4+/-0.2 mb, which is significantly smaller than previous estimates. A similar value, sigma=3.5+/-0.2 mb, is obtained when the nDS nuclear parton densities are included in the analysis, although we emphasize that the present uncertainties on gluon (anti)shadowing do not allow for a precise determination of sigma. Finally, no significant energy dependence of the J/psi-N interaction is observed, unless strong nuclear modifications of the parton densities are assumed.Comment: 25 pages, 5 figure

    Photoproduction of mesons in nuclei at GeV energies

    Full text link
    In a transport model that combines initial state interactions of the photon with final state interactions of the produced particles we present a calculation of inclusive photoproduction of mesons in nuclei in the energy range from 1 to 7 GeV. We give predictions for the photoproduction cross sections of pions, etas, kaons, antikaons, and π+π\pi^+\pi^- invariant mass spectra in ^{12}C and ^{208}Pb. The effects of nuclear shadowing and final state interaction of the produced particles are discussed in detail.Comment: Text added in summary in general reliability of the method, references updated. Phys. Rev. C (2000) in pres

    Simulation of Flow of Mixtures Through Anisotropic Porous Media using a Lattice Boltzmann Model

    Full text link
    We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, hydrophobic interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.Comment: Submitted to EPJ

    Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis

    Full text link
    We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum critical point, in the marginal case of two dimensions (d=2,z=2). Up to next-to-leading order in the number of components (N) of the field, we find that logarithmic corrections do not lead to an enhancement of the Landau damping. This is in agreement with a renormalization-group analysis, for arbitrary N. Hence, the logarithmic effects are unable to account for the behavior reportedly observed in inelastic neutron scattering experiments on CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment (local approximation) of this theory, and find that only subdominant corrections to the Landau damping are obtained within this approximation, in contrast to recent claims.Comment: 15 pages, 8 figure

    (p,n) Experiments at IUCF

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit
    corecore