1,238 research outputs found

    Inverse energy cascade in forced two-dimensional quantum turbulence

    Get PDF
    We demonstrate an inverse energy cascade in a minimal model of forced 2D quantum vortex turbulence. We simulate the Gross-Pitaevskii equation for a moving superfluid subject to forcing by a stationary grid of obstacle potentials, and damping by a stationary thermal cloud. The forcing injects large amounts of vortex energy into the system at the scale of a few healing lengths. A regime of forcing and damping is identified where vortex energy is efficiently transported to large length scales via an inverse energy cascade associated with the growth of clusters of same-circulation vortices, a Kolmogorov scaling law in the kinetic energy spectrum over a substantial inertial range, and spectral condensation of kinetic energy at the scale of the system size. Our results provide clear evidence that the inverse energy cascade phenomenon, previously observed in a diverse range of classical systems, can also occur in quantum fluids

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    Transport behaviour of a Bose Einstein condensate in a bichromatic optical lattice

    Get PDF
    The Bloch and dipole oscillations of a Bose Einstein condensate (BEC) in an optical superlattice is investigated. We show that the effective mass increases in an optical superlattice, which leads to localization of the BEC, in accordance with recent experimental observations [16]. In addition, we find that the secondary optical lattice is a useful additional tool to manipulate the dynamics of the atoms.Comment: Modified manuscrip

    Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes

    Get PDF
    Analytical approximations for {} and {} of a quantized scalar field in static spherically symmetric spacetimes are obtained. The field is assumed to be both massive and massless, with an arbitrary coupling ξ\xi to the scalar curvature, and in a zero temperature vacuum state. The expressions for {} and {} are divided into low- and high-frequency parts. The contributions of the high-frequency modes to these quantities are calculated for an arbitrary quantum state. As an example, the low-frequency contributions to {} and {} are calculated in asymptotically flat spacetimes in a quantum state corresponding to the Minkowski vacuum (Boulware quantum state). The limits of the applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde

    Generating vortex rings in Bose-Einstein condensates in the line-source approximation

    Get PDF
    We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the rotational of the superfluid velocity field is different from zero only on a circumference of given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.Comment: Accepted for publication in Phys. Rev.

    Simulation of a stationary dark soliton in a trapped zero-temperature Bose-Einstein condensate

    Full text link
    We discuss a computational mechanism for the generation of a stationary dark soliton, or black soliton, in a trapped Bose-Einstein condensate using the Gross-Pitaevskii (GP) equation for both attractive and repulsive interaction. It is demonstrated that the black soliton with a "notch" in the probability density with a zero at the minimum is a stationary eigenstate of the GP equation and can be efficiently generated numerically as a nonlinear continuation of the first vibrational excitation of the GP equation in both attractive and repulsive cases in one and three dimensions for pure harmonic as well as harmonic plus optical-lattice traps. We also demonstrate the stability of this scheme under different perturbing forces.Comment: 7 pages, 15 ps figures, Final version accepted in J Low Temp Phy

    Persistent currents in a circular array of Bose-Einstein condensates

    Full text link
    A ring-shaped array of Bose-Einstein condensed atomic gases can display circular currents if the relative phase of neighboring condensates becomes locked to certain values. It is shown that, irrespective of the mechanism responsible for generating these states, only a restricted set of currents are stable, depending on the number of condensates, on the interaction and tunneling energies, and on the total number of particles. Different instabilities due to quasiparticle excitations are characterized and possible experimental setups for testing the stability prediction are also discussed.Comment: 7 pages, REVTex

    Thermalization of an impurity cloud in a Bose-Einstein condensate

    Full text link
    We study the thermalization dynamics of an impurity cloud inside a Bose-Einstein condensate at finite temperature, introducing a suitable Boltzmann equation. Some values of the temperature and of the initial impurity energy are considered. We find that, below the Landau critical velocity, the macroscopic population of the initial impurity state reduces its depletion rate. For sufficiently high velocities the opposite effect occurs. For appropriate parameters the collisions cool the condensate. The maximum cooling per impurity atom is obtained with multiple collisions.Comment: 4 pages 6 figure

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Macroscopic Quantum Fluctuations in the Josephson Dynamics of Two Weakly Linked Bose-Einstein Condensates

    Full text link
    We study the quantum corrections to the Gross-Pitaevskii equation for two weakly linked Bose-Einstein condensates. The goals are: 1) to investigate dynamical regimes at the borderline between the classical and quantum behaviour of the bosonic field; 2) to search for new macroscopic quantum coherence phenomena not observable with other superfluid/superconducting systems. Quantum fluctuations renormalize the classical Josephson oscillation frequencies. Large amplitude phase oscillations are modulated, exhibiting collapses and revivals. We describe a new inter-well oscillation mode, with a vanishing (ensemble averaged) mean value of the observables, but with oscillating mean square fluctuations. Increasing the number of condensate atoms, we recover the classical Gross-Pitaevskii (Josephson) dynamics, without invoking the symmetry-breaking of the Gauge invariance.Comment: Submitte
    corecore