3,223 research outputs found
CM-DiI and MCF-7 Breast Cancer Cell Responses to Chemotherapeutic Agents
CM-DiI is a lipophilic, red fluorescent dye used for staining and tracking the migration of cells. CM-DiI makes it possible to visualize cells in histological regions and can therefore be very useful for the tracking of cancer cell proliferation and metastasis in vivo. The ability to track and quantitate cancer cell proliferation in vivo is essential for cancer drug discovery. If CM-DiI labeled cancer cells respond to chemotherapy agents similar to unlabeled cancer cells, it facilitates screening of potential anti-cancer compounds using CM-DiI labeled cells in a xenotransplanted, transgenic zebrafish model (Danio rerio). To investigate whether CM-DiI labeling would affect cancer cells’ sensitivity when treated with established chemotherapeutic agents, the human breast cancer cell line MCF-7 was used. The chemotherapeutic agents used were doxorubicin, 4-hydroxytamoxifen, and paclitaxel. We hypothesized that CM-DiI would have no effect on the cells’ viability and sensitivity when treated with the chemotherapeutic drugs. Both labeled and unlabeled MCF-7 cells were seeded and after 24 hours each plate was treated with one of ten concentrations ranging from 0.05 µM to 1 mM of a chemotherapy compound. After incubating for 72 hours, cell viability was determined using a colorimetric MTS assay. Cell viability was not significantly different between labeled and unlabeled cells following exposure to doxorubicin and 4-hydroxytamoxifen. The results for paclitaxel, however, were inconclusive. These results provided evidence to support future aims wherein CM-DiI stained breast cancer cells will be injected into transparent zebrafish that possess green fluorescent protein labeled vasculature enabling the tracking of cells’ growth and migration while in the presence of potential new anti-cancer drugs
Exact trace formulae for a class of one-dimensional ray-splitting systems
Based on quantum graph theory we establish that the ray-splitting trace
formula proposed by Couchman {\it et al.} (Phys. Rev. A {\bf 46}, 6193 (1992))
is exact for a class of one-dimensional ray-splitting systems. Important
applications in combinatorics are suggested.Comment: 14 pages, 3 figure
Emotional and non-emotional memories are suppressible under direct suppression instructions
Research on retrieval suppression has produced varying results concerning whether negatively valenced memories are more or less suppressible than neutral memories. This variability may arise if, across studies, participants adopt different approaches to memory control. Cognitive and neurobiological research points to two mechanisms that achieve retrieval suppression: thought-substitution and direct suppression (Benoit & Anderson, 2012; Bergström, de Fockert, & Richardson-Klavehn, 2009). Using the Think/No-think paradigm, this study examined whether participants can inhibit neutral and negatively valenced memories, using a uniform direct suppression strategy. Importantly, when strategy was controlled, negative and neutral items were comparably inhibited. Participants reported high compliance with direct suppression instructions, and success at controlling awareness predicted forgetting. These findings provide the first evidence that direct suppression can impair negatively valenced events, and suggest that variability in forgetting negative memories in prior studies is unlikely to arise from difficulty using direct suppression to control emotionally negative experiences
A general perspective of the characterization and quantification of nanoparticles: Imaging, spectroscopic, and separation techniques
This article gives an overview of the different techniques used to identify, characterize, and quantify engineered nanoparticles (ENPs). The state-of-the-art of the field is summarized, and the different characterization techniques have been grouped according to the information they can provide. In addition, some selected applications are highlighted for each technique. The classification of the techniques has been carried out according to the main physical and chemical properties of the nanoparticles such as morphology, size, polydispersity characteristics, structural information, and elemental composition. Microscopy techniques including optical, electron and X-ray microscopy, and separation techniques with and without hyphenated detection systems are discussed. For each of these groups, a brief description of the techniques, specific features, and concepts, as well as several examples, are described.Junta de Andalucía FQM-5974CEI-Biotic Granada CEI2013- MP-1
Mean field approach to antiferromagnetic domains in the doped Hubbard model
We present a restricted path integral approach to the 2D and 3D repulsive
Hubbard model. In this approach the partition function is approximated by
restricting the summation over all states to a (small) subclass which is chosen
such as to well represent the important states. This procedure generalizes mean
field theory and can be systematically improved by including more states or
fluctuations. We analyze in detail the simplest of these approximations which
corresponds to summing over states with local antiferromagnetic (AF) order. If
in the states considered the AF order changes sufficiently little in space and
time, the path integral becomes a finite dimensional integral for which the
saddle point evaluation is exact. This leads to generalized mean field
equations allowing for the possibility of more than one relevant saddle points.
In a big parameter regime (both in temperature and filling), we find that this
integral has {\em two} relevant saddle points, one corresponding to finite AF
order and the other without. These degenerate saddle points describe a phase of
AF ordered fermions coexisting with free, metallic fermions. We argue that this
mixed phase is a simple mean field description of a variety of possible
inhomogeneous states, appropriate on length scales where these states appear
homogeneous. We sketch systematic refinements of this approximation which can
give more detailed descriptions of the system.Comment: 14 pages RevTex, 6 postscript figures included using eps
Dynamic black-hole entropy
We consider two non-statistical definitions of entropy for dynamic
(non-stationary) black holes in spherical symmetry. The first is analogous to
the original Clausius definition of thermodynamic entropy: there is a first law
containing an energy-supply term which equals surface gravity times a total
differential. The second is Wald's Noether-charge method, adapted to dynamic
black holes by using the Kodama flow. Both definitions give the same answer for
Einstein gravity: one-quarter the area of the trapping horizon.Comment: 3 pages, revte
Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides
A theory of Kondo lattices is developed for the t-J model on a square
lattice. The spin susceptibility is described in a form consistent with a
physical picture of Kondo lattices: Local spin fluctuations at different sites
interact with each other by a bare intersite exchange interaction, which is
mainly composed of two terms such as the superexchange interaction, which
arises from the virtual exchange of spin-channel pair excitations of electrons
across the Mott-Hubbard gap, and an exchange interaction arising from that of
Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by
intersite spin fluctuations developed because of itself. The enhanced exchange
interaction is responsible for the development of superconducting fluctuations
as well as the Cooper pairing between Gutzwiller's quasi-particles. On the
basis of the microscopic theory, we develop a phenomenological theory of
low-temperature superconductivity and pseudo-gaps in the under-doped region as
well as high-temperature superconductivity in the optimal-doped region.
Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting
low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and
(0,\pm\pi/a), with a the lattice constant, or X points at the chemical
potential are swept away by strong inelastic scatterings, and quasi-particles
are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or
line. As temperatures decrease in the vicinity of superconducting critical
temperatures, pseudo-gaps become smaller and the well-defined region is
extending toward X points. The condensation of d\gamma-wave Cooper pairs
eventually occurs at low enough temperatures when the pair breaking by
inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure
Low energy and dynamical properties of a single hole in the t-Jz model
We review in details a recently proposed technique to extract information
about dynamical correlation functions of many-body hamiltonians with a few
Lanczos iterations and without the limitation of finite size. We apply this
technique to understand the low energy properties and the dynamical spectral
weight of a simple model describing the motion of a single hole in a quantum
antiferromagnet: the model in two spatial dimension and for a double
chain lattice. The simplicity of the model allows us a well controlled
numerical solution, especially for the two chain case. Contrary to previous
approximations we have found that the single hole ground state in the infinite
system is continuously connected with the Nagaoka fully polarized state for
. Analogously we have obtained an accurate determination of the
dynamical spectral weight relevant for photoemission experiments. For
an argument is given that the spectral weight vanishes at the Nagaoka energy
faster than any power law, as supported also by a clear numerical evidence. It
is also shown that spin charge decoupling is an exact property for a single
hole in the Bethe lattice but does not apply to the more realistic lattices
where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to
appear in Phys. Rev
Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients
We study theoretically the phoretic motion of a spheroidal particle, which
generates solute gradients in the surrounding unbounded solvent via chemical
reactions active on its surface in a cap-like region centered at one of the
poles of the particle. We derive, within the constraints of the mapping to
classical diffusio-phoresis, an analytical expression for the phoretic velocity
of such an object. This allows us to analyze in detail the dependence of the
velocity on the aspect ratio of the polar and the equatorial diameters of the
particle and on the fraction of the particle surface contributing to the
chemical reaction. The particular cases of a sphere and of an approximation for
a needle-like particle, which are the most common shapes employed in
experimental realizations of such self-propelled objects, are obtained from the
general solution in the limits that the aspect ratio approaches one or becomes
very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal
Operator-Based Truncation Scheme Based on the Many-Body Fermion Density Matrix
In [S. A. Cheong and C. L. Henley, cond-mat/0206196 (2002)], we found that
the many-particle eigenvalues and eigenstates of the many-body density matrix
of a block of sites cut out from an infinite chain of
noninteracting spinless fermions can all be constructed out of the one-particle
eigenvalues and one-particle eigenstates respectively. In this paper we
developed a statistical-mechanical analogy between the density matrix
eigenstates and the many-body states of a system of noninteracting fermions.
Each density matrix eigenstate corresponds to a particular set of occupation of
single-particle pseudo-energy levels, and the density matrix eigenstate with
the largest weight, having the structure of a Fermi sea ground state,
unambiguously defines a pseudo-Fermi level. We then outlined the main ideas
behind an operator-based truncation of the density matrix eigenstates, where
single-particle pseudo-energy levels far away from the pseudo-Fermi level are
removed as degrees of freedom. We report numerical evidence for scaling
behaviours in the single-particle pseudo-energy spectrum for different block
sizes and different filling fractions \nbar. With the aid of these
scaling relations, which tells us that the block size plays the role of an
inverse temperature in the statistical-mechanical description of the density
matrix eigenstates and eigenvalues, we looked into the performance of our
operator-based truncation scheme in minimizing the discarded density matrix
weight and the error in calculating the dispersion relation for elementary
excitations. This performance was compared against that of the traditional
density matrix-based truncation scheme, as well as against a operator-based
plane wave truncation scheme, and found to be very satisfactory.Comment: 22 pages in RevTeX4 format, 22 figures. Uses amsmath, amssymb,
graphicx and mathrsfs package
- …
