49,752 research outputs found

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Electronic theory for superconductivity in Sr2_2RuO4_4: triplet pairing due to spin-fluctuation exchange

    Full text link
    Using a two-dimensional Hubbard Hamiltonian for the three electronic bands crossing the Fermi level in Sr2_2RuO4_4 we calculate the band structure and spin susceptibility χ(q,ω)\chi({\bf q}, \omega) in quantitative agreement with nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) experiments. The susceptibility has two peaks at {\bf Q}i=(2π/3,2π/3)_i = (2\pi/3, 2\pi/3) due to the nesting Fermi surface properties and at {\bf q}i=(0.6π,0)_i = (0.6\pi, 0) due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange theory as in layered cuprates we determine from χ(q,ω)\chi({\bf q}, \omega), electronic dispersions, and Fermi surface topology that superconductivity in Sr2_2RuO4_4 consists of triplet pairing. Combining the Fermi surface topology and the results for χ(q,ω)\chi({\bf q}, \omega) we can exclude ss- and dd-wave symmetry for the superconducting order parameter. Furthermore, within our analysis and approximations we find that ff-wave symmetry is slightly favored over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte

    A two-species continuum model for aeolian sand transport

    Get PDF
    Starting from the physics on the grain scale, we develop a simple continuum description of aeolian sand transport. Beyond popular mean-field models, but without sacrificing their computational efficiency, it accounts for both dominant grain populations, hopping (or "saltating") and creeping (or "reptating") grains. The predicted stationary sand transport rate is in excellent agreement with wind tunnel experiments simulating wind conditions ranging from the onset of saltation to storms. Our closed set of equations thus provides an analytically tractable, numerically precise, and computationally efficient starting point for applications addressing a wealth of phenomena from dune formation to dust emission.Comment: 23 pages, 9 figure

    Spin-charge separation and Kondo effect in an open quantum dot

    Full text link
    We study a quantum dot connected to the bulk by single-mode junctions at almost perfect conductance. Although the average charge eNe\langle N \rangle of the dot is not discrete, its spin remains quantized: s=1/2s=1/2 or s=0s=0, depending (periodically) on the gate voltage. This drastic difference from the conventional mixed-valence regime stems from the existence of a broad-band, dense spectrum of discrete levels in the dot. In the doublet state, the Kondo effect develops at low temperatures. We find the Kondo temperature TKT_K and the conductance at TTKT\lesssim T_K.Comment: 4 pages, 1 figur

    Theory of strong inelastic co-tunneling

    Full text link
    We develop a theory of the conductance of a quantum dot connected to two leads by single-mode quantum point contacts. If the contacts are in the regime of perfect transmission, the conductance shows no Coulomb blockade oscillations as a function of the gate voltage. In the presence of small reflection in both contacts, the conductance develops small Coulomb blockade oscillations. As the temperature of the system is lowered, the amplitude of the oscillations grows, and eventually sharp periodic peaks in conductance are formed. Away from the centers of the peaks the conductance vanishes at low temperatures as T2T^2, in agreement with the theory of inelastic co-tunneling developed for the weak-tunneling case. Conductance near the center of a peak can be studied using an analogy with the multichannel Kondo problem. In the case of symmetric barriers, the peak conductance at T0T\to 0 is of the order of e2/e^2/\hbar. In the asymmetric case, the peak conductance vanishes linearly in temperature.Comment: 22 pages, 4 figures, uses REVTEX 3.0, epsf.sty and multicol.st

    Scaling near the upper critical dimensionality in the localization theory

    Full text link
    The phenomenon of upper critical dimensionality d_c2 has been studied from the viewpoint of the scaling concepts. The Thouless number g(L) is not the only essential variable in scale transformations, because there is the second parameter connected with the off-diagonal disorder. The investigation of the resulting two-parameter scaling has revealed two scenarios, and the switching from one to another scenario determines the upper critical dimensionality. The first scenario corresponds to the conventional one-parameter scaling and is characterized by the parameter g(L) invariant under scale transformations when the system is at the critical point. In the second scenario, the Thouless number g(L) grows at the critical point as L^{d-d_c2}. This leads to violation of the Wegner relation s=\nu(d-2) between the critical exponents for conductivity (s) and for localization radius (\nu), which takes the form s=\nu(d_c2-2). The resulting formulas for g(L) are in agreement with the symmetry theory suggested previously [JETP 81, 925 (1995)]. A more rigorous version of Mott's argument concerning localization due topological disorder has been proposed.Comment: PDF, 7 pages, 6 figure

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap

    Optimal time travel in the Godel universe

    Full text link
    Using the theory of optimal rocket trajectories in general relativity, recently developed in arXiv:1105.5235, we present a candidate for the minimum total integrated acceleration closed timelike curve in the Godel universe, and give evidence for its minimality. The total integrated acceleration of this curve is lower than Malament's conjectured value (Malament, 1984), as was already implicit in the work of Manchak (Manchak, 2011); however, Malament's conjecture does seem to hold for periodic closed timelike curves.Comment: 16 pages, 2 figures; v2: lower bound in the velocity and reference adde
    corecore